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Abstract 

When trying to account for performance on perceptual tasks such as motion 

extrapolation, researchers typically postulate specific properties of the perceptual system. 

The present study investigated whether a counterintuitive finding in a previous motion-

extrapolation experiment could be explained solely尀 by尀 subjects’ differing beliefs about 

task difficulty. Nine participants in summer programs at the University of Minnesota 

completed a computer-based task requiring them to learn the movement patterns of an 

indefinitely outlined object. As hypothesized, a one-sentence warning of increased 

difficulty measurably increased learning of object trajectories. But self-reports showed no 

evidence of increased effort, leaving ambiguous the means of increased learning. These 

results suggest that high-level attitudes and beliefs can play an influential role in low-

level tasks. 

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

http://creativecommons.org/licenses/by-sa/3.0/us/deed.en_US

Copyright 2010 Kodi Arfer.



 Arfer, Kodi 

2 

When people are asked to guess how an object will move, whether working from an 

animation, a drawing, or a verbal description of a situation, their responses are many and 

varied. Sometimes their predictions are blatantly at odds with Newtonian mechanics 

(Cooke & Breedin, 1994), and sometimes they make theoretically optimal use of limited, 

competing information (Fulvio, Maloney, & Schrater, 2010). Average accuracy varies 

widely between tasks, and individual differences can be great (Cooke & Breedin, 1994). 

The most common approach to making sense of all the data is to postulate mental 

phenomena specific to the perceptual tasks of interest and then test for their existence. 

For example, a persistent idea in motion extrapolation is that people make predictions 

using some implicit theory of mechanics that, however unrealistic and unconscious, is 

coherent and applied consistently; one such theory is called impetus theory (Kozhevnikov 

& Hegarty, 2001). A different kind of example is given by the ―dynamic mental 

representations‖ of Freyd (1987), internal simulations that run in real time and model 

properties such as momentum and centripetal force (Hubbard, 1996). Yet another 

approach is to find statistical models that match behavior such that any surprising aspects 

of the behavior can be explained as properties of the model (Hudson, Maloney, & Landy, 

2007). 

Purpose-built explanations such as these can of course have great explanatory power, but 

they come with a price. Their power comes from their specificity, and specificity runs 

counter to parsimony. If we tried to explain all behavior of interest with specialized 

hypotheses, we would be left with a gigantic, unenlightening patchwork quilt of theories. 

Instead, we should as much as possible appeal to more general ideas, ideas that apply to a 

wide range of human behavior. Indeed, if any such ideas are correct, they probably have 

ramifications for whatever problems we’re interested in and thus may interfere with any 

specialized explanations. Cooke and Breedin (1994) demonstrated some ramifications of 

this kind when they found that people’s motion predictions were sensitive to contextual 

cues in the vein of Tversky and Kahneman’s (1981) ―framing effects‖ (which have 

implications for nearly all judgments) rather than remaining consistent with impetus 

theory. 

Can we in fact obviate the need for a specialized explanation by applying a general idea? 

Consider the case of Schrater and Powell (2010). In this experiment, subjects watched a 

cloud of rapidly moving dots glide across a computer screen until it went behind an 

occluder, then indicated where they thought it would emerge from the occluder (see 

Figure 1). The trajectory of the cloud varied from trial to trial, but it was always a 

sinusoid whose parameters adhered to certain limits. This consistency, along with the 

feedback that subjects sometimes received on how accurate their estimates were, 

permitted subjects to gradually learn about how the cloud moved over the course of 

hundreds of trials. Thus, subjects’ estimates grew more accurate over time. A much more 

surprising result was that the noisier the cloud of dots was—that is, the wider the 

individual dots were spread out and the faster they moved within the cloud—the better 

subjects learned the trajectories. A noisier cloud provided less precise trajectory 

information, and thus made the task harder; why would subjects perform better on a 
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harder task? 

Schrater and Powell hypothesize that this difference reflects the adaptive nature of the 

perceptual system. Subjects had two sources of information they could use to predict 

trajectories: measurements, or what they saw of the cloud’s position at any given 

moment, and a model, or the idea of the cloud’s movement patterns that they’d built up 

over many trials. According to Schrater and Powell, the perceptual system uses the 

observed reliability of each of these two input sources to adjust how it combines 

sources—which one it favors, and to what degree—when making predictions. So noisy 

measurements would lead participants to use their models more, leading to improved 

performance, since the exact positions of the dots give no trajectory information. 

An alternative explanation is that the difference in learning arose merely from a 

difference in perceived difficulty. That is, the noisier the cloud of dots, the harder subjects 

judged the task to be, and the harder the subjects thought the task was, the more they 

learned. Previous research has established that perceived difficulty is a well-behaved 

variable, insofar as it’s doubly dissociable from perceived degree of control over a 

difficult situation, and people will rate a task designed to sound hard as more difficult 

than a task designed to sound easy (Trafimow, Sheeran, Conner, & Finlay, 2002). Brehm, 

Wright, Solomon, Silka, and Greenberg (1983) found that difficult goals are more 

attractive than easy goals and thus led to greater mobilization of energy; one can easily 

Figure 1. A screenshot of the program used in the present study, which appears much as 

in Schrater and Powell (2010). 
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imagine that such motivation would increase learning. To directly test whether 

differences in perceived difficulty could explain Schrater and Powell’s (2010) results, I 

ran a variation of their experiment in which an instructional manipulation intended to 

affect perceived difficulty varied independently of the task proper. The manipulation, 

modeled after Moè (2009), was to tell some subjects that the second block of the 

experiment was harder than the first. I intended thus to send a message that was neither 

ambiguous (it gave subjects a clear basis for comparison, unlike a message to the effect 

of ―This task is hard.‖) nor likely to arouse suspicion nor confounded with any other 

message. I also changed the task slightly between blocks to prevent subjects from 

doubting the warning on the grounds that the second task was clearly identical to the first. 

Method 

Participants 

Participants were students employed by or enrolled in summer programs at the University 

of Minnesota, recruited with fliers or in person. Ages ranged from 18 to 33, and all but 

one participant were female. One subject’s data was lost due to a bug in the program used 

for data collection, leaving N = 9 for the purposes of analysis. All subjects gave informed 

consent and were compensated with $10. 

Procedure 

Subjects read the following instructions on-screen: 

In this task, your goal is to catch as many of the moving dots as you can in 

a bucket. The bucket appears as a white rectangle on the right-hand side of 

the screen; you can move it up and down with the mouse. Beware that the 

black rectangle will block your view of the dots. You’ll also see colored 

bars at the top and bottom edges of the screen. When the bars are blue, 

you’ll receive feedback on your performance. When the bars are yellow, 

you’ll receive no feedback. 

Each subject completed two blocks of 145 trials, taking about 20 minutes in total. The 

basic procedure was largely the same as in Schrater and Powell (2010); in fact, the 

computer program used to administer the task was a modified version of Schrater and 

Powell’s. Each trial, a cloud of seven dots emerged from the left edge of the screen and 

traveled at a constant horizontal speed until it reached the right edge. The cloud’s pattern 

of vertical movement (its trajectory) varied depending on the trial. In one of the two 145-

trial blocks, trajectories were sinusoids whose wavelength, amplitude, and phase were 

randomly selected from normal distributions; these were largely identical to the 

trajectories in Schrater and Powell (2010). In the other block, trajectories were parabolic 

waves of a constant wavelength equal to twice the width of the screen, with amplitudes 

and phases selected from uniform distributions. Whether subjects received sinusoidal 

trajectories in Block 1 and parabolic trajectories in Block 2 or the reverse was determined 
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by random assignment. The positions of the individual dots were random offsets from the 

center of the cloud, and were determined for each frame of the animation independently 

of previous frames. So while the cloud as a whole followed a smooth trajectory, the dots 

appeared to jump around arbitrarily. 

When the cloud of dots reached the midline of the occluder, the bucket became immobile, 

forcing subjects to predict where the dots would emerge in advance. What happened 

while the bucket was immobile depended on the type of trial. In testing trials, indicated 

by yellow bars at the top and bottom edges of the screen, the occluder suddenly extended 

rightwards to completely obscure the bucket and wherever the dots actually emerged. 

Subjects thus had no way of assessing the accuracy of their prediction. In training trials, 

indicated by blue bars, the bucket remained visible, the dots froze as they exited the 

occluder, and the subject received a brief score report such as: 

This trial, you caught 72% of the dots. 

Across all trials, you’ve caught 56% of the dots. 

The second figure included only trials in the current block. Each block began with 20 

testing trials and then used a pattern of 20 training trials followed by 5 testing trials. 

One additional experimental manipulation was the instructions subjects received at the 

beginning of Block 2. All subjects read ―Now for the second task, in which the dots will 

move in a different trajectory.‖, but for some this was immediately followed by ―Note 

that this task is more difficult than the first.‖ 

Random assignment of both between-subjects conditions yielded the following cell sizes: 

 4 subjects saw sinusoidal trajectories first and received no warning of increased 

difficulty. 

 1 subject saw parabolic trajectories first and received no warning. 

 2 subjects saw sinusoidal trajectories first and received a warning. 

 2 subjects saw parabolic trajectories first and received a warning. 

After completing both blocks, subjects answered questionnaires about the task and their 

experience with video games. 

Results 

For each trial, participants were assigned a raw score based on how accurately they’d 

predicted the cloud’s trajectory. This was computed as the signed vertical distance from 

the final mouse position to the point where the center of the cloud emerged from the 

occluder, such that a positive score indicated that the cursor was above the trajectory. 

Thus, scores lower in absolute value represented better performance. In general, 

performance was slightly worse in sinusoidal blocks than parabolic blocks. Figure 2 

displays some preliminary data on how trajectory parameters influenced raw scores. 

Notice that subjects performed better when the occluded portion of the trajectory curved 
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Figure 2. (a) Raw scores (see text) in parabolic trials as a function of trajectory phase, 

collapsed across all subjects. (b–d) Sample trajectories with correspondingly marked 

phases in (a). The vertical lines represent the edges of the occluder. 
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gently than when it curved sharply; this is consistent with Schrater and Powell’s (2010) 

finding that subjects had a strong bias towards extrapolating linearly. 

Raw scores had no clear pattern across trials, oscillating rapidly between high and low. 

To create a less noisy measure of learning, for each 72-trial half of each block, I fit a 

least-squares line to raw scores as a function of trajectory amplitude. I defined the error 

for each half-block as the standard deviation of the residuals produced by this regression. 

Collapsing across all conditions, errors for first half-blocks were significantly greater 

than errors for second half-blocks, t(17) = 2.14, p = .023 (one-tailed), indicating that 

subjects grew better at predicting trajectories over the course of each block. 

A comparison of Block 2 error scores between the warned and unwarned conditions can 

be seen in Figure 3. In both conditions, initial error was strongly correlated with 

improvement, r = 0.89 for the unwarned subjects and r = 0.92 for the warned. The slopes 

of both regression lines are positive, meaning that greater initial error predicted greater 

improvement, probably because the range of possible performances was finite and thus 

worse initial performance left more room for improvement. To determine how 

meaningful the difference in slopes is, I employed bootstrapping, a random-resampling 

 

Figure 3. Trajectory learning in Block 2 as a function of initial error. The x-axis gives 

subjects’ error scores for the first half of block 2, and the y-axis gives the difference 

between this score and error for the second half, such that positive y-values indicate a 

decrease in error. Note that removing the rightmost point changes the solid line only 

slightly, and in a way indicating a greater effect of warning—the slope decreases by 

0.066. 
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technique that creates a frequency distribution of a summary statistic from all possible 

weighings of the available data points. The distributions for the two slopes are shown in 

Figure 4. At most 10% of each distribution overlapped with the other; since the slope for 

the warned subjects is steeper, this supports the hypothesis that a warning of increased 

difficulty can enhance learning. The enhancement to learning seems to have taken the 

form of a boost to the previously mentioned effect of greater initial error leading to 

greater improvement. 

On the questionnaire, subjects responded to four items, presented once for each block, on 

7-point Likert scales. The first question was ―How difficult did you find the task?‖, with 

option 1 marked as ―very easy‖ and option 7 as ―very difficult‖. The mean change in 

difficulty ratings from Block 1 to Block 2 was −0.20 for unwarned subjects and +1.00 for 

warned subjects, a difference which is unlikely given the null hypothesis but not to the 

point of significance, t(7) = 1.15, p = .143 (one-tailed). Thus, the warning may not have 

had the intended effect on subjects’ opinions of difficulty; alternatively, the problem may 

have been the combination of a weak effect size, a small sample size, and additional noise 

introduced into the data by collapsing across trajectory-order conditions. The second 

question was ―How much effort did you put into the task?‖, with the response scale 

anchored at ―no effort‖ and ―great effort‖. The mean change in effort ratings between 

blocks was +0.40 for unwarned subjects and +0.50 for warned subjects, an insignificant 

difference, t(7) = 0.12, p = .453 (one-tailed). This gives no evidence that warned subjects 

felt they exerted extra effort. 

Figure 4. Superimposed histograms of bootstrapping results for the slopes of the two 

regression lines in Figure 3. To keep the scale of the x-axis small, slopes less than −1.5 or 

greater than +4 (which altogether accounted for less than 7% of slopes) have been 

omitted. 
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Discussion 

As expected, subjects grew better at predicting cloud trajectories with practice, and a 

warning of increased difficulty amplified this effect. These results suggest that the 

paradoxical improvement in performance found by Schrater and Powell (2010) may be 

attributable to perceptions of difficulty alone. Less clear are the means by which the 

warning had its effect. 

First of all, these results give little indication of how the warning motivated subjects to 

learn more. Perhaps some subjects wanted to achieve a certain minimal level of 

performance from the beginning, and they interpreted the warning to imply that reaching 

this minimum would require better trajectory knowledge than in Block 1. Or perhaps they 

figured that the purpose of the warning was to help them adapt to a real increase in 

difficulty and wanted to cooperate. Conversely, some subjects may have realized that the 

warning was a manipulation independent of actual difficulty, and, displeased that I was 

trying to deceive them, sought to falsify the warning by performing well. An intermediate 

possibility is that subjects were curious as to whether the warning was accurate, leading 

them to pay more attention in Block 2 (in order to accurately compare it with Block 1) 

and thus learn more. 

If the difference in learning arose from a difference in attention, how was it that attention 

changed? Did subjects process more information, process the same information more 

thoroughly, or process less irrelevant information? One way subjects might have learned 

more without paying more attention is by positioning the mouse more precisely. More 

precise control of the bucket would’ve permitted more precise interpretation of feedback 

(i.e., score reports). However, the role of feedback in improving performance may have 

been mitigated by the difference between what it reported (proportion of dots caught) and 

the measure of performance I used for analysis (―raw scores‖; i.e., the distance between 

the bucket and the center of the cloud). 

The results of the questionnaire raise questions of how conscious and deliberate 

improvements in learning were. If the warning didn’t affect ratings of effort, subjects 

either didn’t intend to exert more effort in response to the warning or didn’t feel they 

succeeded in doing so. Possibly their adaption to the warning was mostly unconscious 

and involuntary. This poses problems for my simple initial idea of increased perceived 

difficulty triggering a deliberate increase in effort which in turn was responsible for the 

increase in learning. 

On the whole, however, this attempt to explain the results of a perceptual-learning 

experiment in terms of a high-level process was a surprising success, in spite of its small 

sample size. Investigators employing any kind of perceptual task may benefit from 

considering how the presentation of a task and subjects’ beliefs and attitudes about it 

could influence behavior. And in combination with Brehm et al. (1983), the present study 

suggests that teachers may be able to improve student learning not by genuinely 
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challenging students so much as making them expect a challenge. 
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