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Abstract

While weather stations generally capture near-surface ambient air temperature

(Ta) at a high temporal resolution to calculate daily values (i.e., daily minimum,

mean, and maximum Ta), their fixed locations can limit their spatial coverage

and resolution even in densely populated urban areas. As a result, data from

weather stations alone may be inadequate for Ta-related epidemiology particu-

larly when the stations are not located in the areas of interest for human expo-

sure assessment. To address this limitation in the Megalopolis of Central Mexico

(MCM), we developed the first spatiotemporally resolved hybrid satellite-based

land use regression Ta model for the region, home to nearly 30 million people

and includes Mexico City and seven more metropolitan areas. Our model

predicted daily minimum, mean, and maximum Ta for the years 2003–2019. We

used data from 120 weather stations and Land Surface Temperature (LST) data

from NASA's MODIS instruments on the Aqua and Terra satellites on a

1 × 1 km grid. We generated a satellite-hybrid mixed-effects model for each year,

regressing Ta measurements against land use terms, day-specific random inter-

cepts, and fixed and random LST slopes. We assessed model performance using

10-fold cross-validation at withheld stations. Across all years, the root-mean-

square error ranged from 0.92 to 1.92 K and the R2 ranged from .78 to .95. To

demonstrate the utility of our model for health research, we evaluated the total

number of days in the year 2010 when residents ≥65 years old were exposed to

Ta extremes (above 30�C or below 5�C). Our model provides much needed high-

quality Ta estimates for epidemiology studies in the MCM region.
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1 | INTRODUCTION

Climate change has spurred worldwide efforts to model
trends and fluctuations in near-surface (i.e., 2 m) ambient
air temperature (Ta). Recent developments in climatology
and related fields have yielded valuable datasets that
quantify average and extreme temperatures at local and
global spatial scales and at critical time scales that are rel-
evant for exposure science and public health (Donat
et al., 2014; Oyler et al., 2015; Behnke et al., 2016). How-
ever, there is considerable heterogeneity in data sources,
methods, and temperature products—as the process of
producing Ta estimates with adequate spatial and tempo-
ral coverage is far from straightforward. Data have
included in situ observations or reanalysis data from gro-
und stations, radiosondes, satellites, and other sources
(Donat et al., 2014; Behnke et al., 2016). Interpolation
methods have included kriging, angular distance
weighting, thin plate splines, and/or land use regression
(Hofstra et al., 2008). The heterogeneity among different
products makes them difficult to compare. Estimates are
less consistent and accurate for extremes than they are
for averages in Ta. Furthermore, a major limitation even
among widely used datasets is that they have a relatively
coarse spatial resolution that spans many kilometres
(Donat et al., 2014; Behnke et al., 2016).

There are ongoing efforts in urban climate research to
improve the quantification of urban meteorological phe-
nomena, including Ta (Še�cerov et al., 2019; Venter
et al., 2020. Urban areas are particularly important
because they contain most of the world's population;
thus, more accurate estimates of the urban environment
would improve research efforts linking Ta to human
health risks (Venter et al., 2020). However, urban envi-
ronments are complex and heterogeneous, and tradi-
tional meteorological monitoring stations, mostly focused
on synoptic atmospheric conditions, are inadequate for
capturing the spatiotemporal variability of many meteo-
rological phenomena across urban landscapes (Meier
et al., 2017). One direction for moving urban climatology
forward is to densify urban meteorological networks by
increasing the density of various sensors beyond tradi-
tional monitoring stations to include open-source tech-
nology (Še�cerov et al., 2019) or crowdsourced data from
private monitors (Muller et al., 2013). There is also a
trend toward integrating high-density networks with
opportunistic sensing data to improve the quantification
of urban Ta (Venter et al., 2020). This includes remotely
sensed data such as Land Surface Temperature (LST).
LST is retrieved from the thermal infrared signal received
by satellites and measures the thermal radiation emitted
from the earth's surface as a result of the interaction
between incoming solar energy and the ground, or the

top of the canopy in urban and vegetated areas. LST's
spatially continuous and global coverage makes it possi-
ble to examine the thermal heterogeneity of the Earth's
surface and changes over time in surface temperatures
(Hulley et al., 2019).

In epidemiology, there is a growing need for daily
intracity Ta estimates (i.e., 1 × 1 km or higher resolution), as
Ta effects on human health often occur at fine spatial and
temporal scales (Mostofsky et al., 2014; Phung et al., 2016;
Rowland et al., 2020; Venter et al., 2020. To date, many
health studies only use Ta data from ground stations
(Zanobetti and O'Neill, 2018). Data are often used from the
airport weather stations closest to the study population or
from a mix of local weather stations (Zanobetti and
Schwartz, 2008; Ren et al., 2011; Zhang et al., 2017). The
main problem with relying on a sparse network of ground
stations or on stations located far from study populations is
that it can introduce measurement bias and create exposure
misclassification (Armstrong, 1998; Zeger et al., 2000).

Remotely sensed LST has increasingly been used to
refine gridded interpolations of Ta (Oyler et al., 2016). LST
and Ta are physically related; however, their correlation
varies daily due to meteorological conditions, seasonality,
soil moisture, land use, urban geometry, elevation, surface
reflectance, and satellite-surface geometry (Oyler
et al., 2016; Shi et al., 2016a; Pelta and Chudnovsky, 2017).
Researchers have in recent years incorporated satellite
data and land use regression to develop more accurate esti-
mates of Ta for epidemiology (Kloog et al., 2014; Ho
et al., 2016; Shi et al., 2016b; Pelta and Chudnovsky, 2017;
Rosenfeld et al., 2017; Zhang et al., 2017). These new
models have been developed mostly for cities in northern
latitudes, resulting in a geographic concentration of epide-
miological research in these places (Shi et al., 2015; Lee
et al., 2016; Shi et al., 2016a, with very few studies carried
out in other regions (Xu et al., 2014).

In Mexico, epidemiological studies linking Ta exposure
to health outcomes have mainly taken place in Mexico City
and the larger Mexico City Metropolitan Area (MCMA;
O'Neill et al., 2005; Bell et al., 2008; McMichael et al., 2008;
Hurtado-Díaz et al., 2019). These studies reported associa-
tions with acute mortality in different age groups, including
children (0–14 years old) and the elderly (≥65 years old),
who are especially vulnerable to Ta exposure due to their
physiological characteristics and their dependence on care-
givers to regulate their body temperature. While these stud-
ies provide valuable findings, a major shortcoming is that
they assigned citywide daily average temperatures using a
few weather stations with limited spatiotemporal coverage.
Moreover, there is limited research outside of the MCMA
and within the greater Megalopolis of Central Mexico
(MCM), which includes several major metropolitan areas
neighbouring the MCMA.
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Ta estimates with finer spatiotemporal resolutions are
needed to move beyond the citywide approach to more
accurately quantify individuals' exposures. In this paper,
we integrated Ta records from ground meteorological
networks, satellite remote sensing LST and other spatio-
temporal predictors to reconstruct daily minimum, mean,
and maximum Ta for the entire MCM for the 2003–2019
time period at a 1 × 1 km spatial resolution. As a case
study, we provide estimates for the total number of days
in the year 2010 when MCM residents ≥65 years old were
exposed to Ta extremes. Our temperature model opens
up opportunities to reconstruct historical Ta exposures
for any MCM resident and to explore individual-level
associations between Ta and health outcomes. These
methods have yet to be applied to Mexico, a middle-
income country with unique climate zones and
sociodemographic characteristics.

2 | METHODS

2.1 | Study area

The central region of Mexico has experienced rapid
urbanization leading to the development of the MCM,

which has a population of nearly 30 million inhabitants
representing 25% of the country's total population. The
MCM includes the MCMA in its centre and the metropol-
itan areas of Puebla-Tlaxcala, Cuernavaca, Cuautla,
Toluca, Pachuca, Tula, and Tulancingo. A total of
184 municipalities integrate the MCM (USAID, 2014).

Plains, mountains, and hills cover 42, 34, and 24% of
the MCM territory, respectively, and its climate is
influenced by the humid tropical air of the Pacific Ocean,
the Caribbean Sea, and the Gulf of Mexico as well as the
polar air from the North American continent. There are
three main seasons in the region: cold-dry, warm-dry,
and rainy seasons and five thermal zones (% of the total
MCM territory): cold (0.7%), semicold (10%), temperate
(70%), semiwarm (19%), and warm (0.3%). The annual
mean temperature for the region ranges from 4 to 26�C
(USAID, 2014).

The MCM is an irregularly shaped region that is
20,686 km2 in area, and we used the MCM as the predic-
tion area for which we generated and validated our Ta
predictions. The longitude ranges from 99.9 to 97.8�W
and the latitude ranges from 18.6 to 20.2�N (see
Figure 1). To produce the study area for our Ta model,
we expanded the spatial extent by 50 km outwards from
each side of the bounding box of the MCM and rounded

FIGURE 1 Study area showing all available ground meteorological stations (n = 120) used for our daily Ta predictions in the

Megalopolis of Central Mexico (MCM, shown as indigo-coloured regions) from 2003 to 2019 [Colour figure can be viewed at

wileyonlinelibrary.com]
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the limits to the nearest tenth of a degree of longitude or
latitude. This allowed us to include additional stations
that we used only as training data. The result was a rect-
angular region in the plate carrée projection that ranged
from 100.4 to 97.4�W and 18.1 to 20.6�N. This was then
reprojected to match the MODIS sinusoidal projection
and divided into 101,892 total 1 × 1 km cells, and this
output served as our master grid for modelling.

2.2 | Data sources

2.2.1 | Meteorological ground stations

We utilized weather station records from the year 2003
through 2019 inclusive, based on data availability from
the different sources of information. By request, we
obtained historical records of Ta and wind speed from
the Servicio Meteorológico Nacional de México (SMN)
that integrated three monitoring networks: the
Estaciones Meteorológicas Automáticas network (EMAs;
30 stations), the Estaciones Sinópticas Meteorológicas
network (ESIMEs; 10 stations), and a network of observa-
tories (9 stations). We also incorporated two networks for
which data are publicly available on the Internet: the
Sistema de Monitoreo Atmosférico de la Ciudad de Méx-
ico (SIMAT; 34 stations; http://www.aire.cdmx.gob.mx)
and the Programa de Estaciones Meteorológicas
del Bachillerato Universitario at the Universidad
Nacional Autónoma de México (PEMBU-UNAM; 13 sta-
tions; https://www.ruoa.unam.mx/pembu). Finally, we
included observations from personal weather stations
available from Weather Underground (70 stations; http://
wunderground.com). Records for all networks are avail-
able in local time, except those from the EMAs and
ESIMEs networks which are available in UTC and were
converted to local time.

Given the heterogeneous sources of information in
our study which included crowdsourced data, we adapted
methods developed for data quality assessment applied
elsewhere to make them work in our study region (Meier
et al., 2017; Napoly et al., 2018; Dirksen et al., 2020). We
discarded data that did not pass several checks. Each
check, described below, is prepended with the number of
observations that were deleted by the check. (a) (134) If a
station had fewer than 20 observations in a given year,
we dropped that station for that year. (b) (1,670) We
dropped station-days with values that were impossible
(e.g., a maximum Ta that is less than the minimum Ta or
a negative mean wind speed) or implausible according to
climatological records (i.e., colder than −30�C, hotter
than 53�C, or having a mean wind speed greater than
114 m/s). (c) (674) We dropped runs of station-days

(ignoring unobserved days) in which one of the three
daily Ta values (minimum, mean, and maximum),
rounded to the nearest 0.01 K, was repeatedly equal. We
allowed runs of up to two equal values for the mean Ta
and three equal values for the maximum or minimum
Ta. These limits were chosen based on the observation
that longer runs are rare except in Weather Under-
ground. (d) (16,297) We compared observed Ta to
inverse-distance-weighted interpolations of Ta from other
stations on the same day that were no more than 30 km
away and 500 m different in elevation as a “buddy check”
for spatial consistency. We term the squared differences
between observations and these interpolations
“deviations,” and for each Ta's daily observation, we
computed the 99th percentile of the deviation, excluding
Weather Underground. We dropped station-days for
which a deviation exceeded this percentile, and also
dropped entire stations for which 20% or more of the
temperature-days were dropped.

These checks removed 11% of Weather Underground
observations, 6% of SMN-observatories observations, and
less than 5% of observations from each of the other net-
works. Afterwards, 402,823 observations from 166 stations
remained; the above per-network counts of stations are
after data cleaning. Of these, there were 290,886 observa-
tions from 120 stations in the prediction area (i.e., the
area of the MCM). We checked for possible duplicate sta-
tions (stations with different identifiers but similar loca-
tions and a substantial number of identical observations)
but did not find any. A summary of the geographic loca-
tion of stations from each network, number of records
used in our analyses, land use/land cover, and local cli-
mate is shown in Table S1, Supporting Information. The
geographic location of stations from the UNAM and
REDMET networks can be found online in their websites
(UNAM, https://www.ruoa.unam.mx/pembu/index.php?
page=map#; REDMET, http://www.aire.cdmx.gob.mx/
opendata/catalogos/cat_estacion.csv). A complete list
with geographic coordinates for the EMAs and ESIMEs
networks of the SMN was downloaded from their website
(http://smn1.conagua.gob.mx/emas/catalogoa.html). The
same information for all the networks from the SMN was
received in our data request. Information on land
use/land cover (Instituto Nacional de Estadística y
Geografía (INEGI), 2017) and local climate (Instituto
Nacional de Estadística y Geografía (INEGI), 2008) was
obtained from the Instituto Nacional de Estadística y
Geografía de México (INEGI) from its website. In
Data S1, we included general characteristics about
mounting, location, and exposure of instruments and
contact information for each network, based on guidance
on metadata by Aguilar et al. (2003), when such informa-
tion was available.
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2.2.2 | Land surface temperature

LST records were extracted from the daily daytime and
night-time MODIS LST products MOD11A1 (Terra satellite)
and MYD11A1 (Aqua satellite) using the most recent
reprocessing version (Collection 6). LST retrievals from both
satellites were available by the first half of 2002, but we
selected 2003 as the start year due to data completeness
from both sensors (Tatem et al., 2004). The spatial resolution
was 1 × 1 km, and data were available for the entire study
period. Local overpass times for Terra and Aqua were
around 2230 and 0130 for night-time, and around 1030 and
1330 for daytime, respectively. MODIS LST products are
derived from channels 31 (10.78–11.28 μm) and
32 (11.77–12.27 μm) in the thermal infrared band, and they
are already corrected for emissivity and atmospheric effects
using the split-window algorithm. These products have been
used before in similar studies due to their high spatiotempo-
ral resolution and free availability (Benali et al., 2012; Kloog
et al., 2012; 2014; Shi et al., 2016b; Rosenfeld et al., 2017).

2.2.3 | Land use terms

Vegetation
To calculate a measure of vegetation density, the monthly
Normalized Difference Vegetation Index (NDVI) from
both Terra and Aqua MODIS instruments were averaged
(Collection 6 MOD13_A3 and MYD13_A3) at the spatial
resolution of 1 × 1 km.

Elevation
Elevation from the Shuttle Radar Topography Mission at
a 30 m spatial resolution was aggregated by applying a
Gaussian filter (150 m SD) and extracting data to the cen-
troids of the MODIS 1 × 1 km products.

2.3 | Statistical methods

Aqua and Terra readings were combined to form a
daily LST variable for daytime and night-time. When
one satellite's reading was missing for a given time and
place, data from the other was used. When both

readings were available, the average was calculated. To
impute cases where both satellite readings were miss-
ing, we used a linear-interpolation algorithm as fol-
lows. For a given day t and grid cell g, we found the
closest days before and after t in the same year as t, t0,
and t1, with a nonmissing value of the appropriate vari-
able (daytime LST or night-time LST) at g, and we com-
puted the imputed value as

yig= y0 t1− tð Þ+y1 t− t0ð Þð Þ= t1− t0ð Þ,

where yig is the LST at day ti and place g. When no such
t0 exists for the given year, y1, unaltered, is used as the
imputed value instead, and likewise y0 substitutes when
no t1 exists. We also imputed missing wind speed. We did
this by using the wind speed from the closest station with
a value for the same day (or the previous day, if no other
station was available that day, or the day before that if
necessary, and so on).

We calibrated daily Ta (minimum, mean, and maxi-
mum) on LST as follows: each Ta station was assigned
the closest LST observation on a specific day (within
each 1 × 1 km grid cell) using grid cells for which both
Ta measurements and LST values (observed or
imputed) were available. On each day we estimated a
separate slope in the relationship between Ta and LST
to capture the temporal variability in their relation-
ship. The calibrations, fit separately per year and daily
Ta outcome (minimum, mean, or maximum), were
mixed-effects regression models implemented with the
R package lme4 (Bates et al., 2015). After calibration,
we used the coefficients of the mixed-effects model to
predict Ta in those grid cells without Ta information
but with LST values. A generalization of the equations
for the three models (for minimum, mean, and maxi-
mum Ta) is,

where Taij is near-ground (2 m) air temperature (mini-
mum, mean, or maximum) on location i on day j;
(α + υj) are the fixed and random intercepts; day and
night LSTij are satellite day and satellite night LST;
imputed day and night LSTij are indicators of whether

Taij= α+υj
� �

+β1day LSTij+β2night LSTij+β3imputed day LSTij+β4imputed night LSTij+

β5NDVIij+β6sin2π timei+β7cos2π timei+β8elevationi+β9meanwind speedij+β10seasonj+

β11seasonj*day surface temperatureij+β12seasonj*night surface temperatureij+εij,
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satellite day and satellite night surface temperatures
are imputed; NDVIij is the mean NDVI of Aqua and
Terra for grid cell i in month j; timej is the time of year
calculated as (day of the year−1)/(total days of the
year−1); elevationi is the mean elevation at site i; and
mean wind speedij is daily mean wind speed from the
nearest station. The season was defined as a categorical
variable with three levels: cold-dry for November
through February, warm-dry for March and April, and
rainy for May to October. All continuous variables
were centred and scaled before fitting. All analyses
were conducted in R 4.0.2 (R Core Team, 2020).

2.3.1 | Assessment of model
performance

Within each year, all available stations in the prediction
area were randomly split into 10 cross-validation folds.
Inside the cross-validation loop, models were trained with
all observations (occurring in the year of interest) for sta-
tions in the training folds plus all stations outside the pre-
diction area but within the study area (i.e., calibration
folds with 90% of the data), and asked to predict the obser-
vations for the stations in the test fold (i.e., validation folds
with 10% of the data). Mean wind speed for test stations
was imputed as if all test stations were missing mean wind
speed at all times. The primary measure of model perfor-
mance was the root-mean-square error (RMSE) of cross-
validated predictions. Tabular summaries of model results
also report the SD and improvement (SD – RMSE) of each
outcome (minimum, mean, or maximum Ta) in a particu-
lar year, season, or subregion. To evaluate prediction per-
formance more evenly throughout the study region, our
summary tables include spatially weighted versions of the
SD and RMSE, for which each day and each 16th of a
longitude–latitude grid cell (splitting each degree of longi-
tude or latitude into four equal intervals) with at least one
observation is given a total weight of 1. These metrics help
to evaluate performance when we consider areas with few
stations (e.g., the northern parts of the MCM) to be
equally important to areas with lots of stations
(e.g., Mexico City proper). In addition, we estimate the
degree to which our predictions capture spatial and tem-
poral patterns by computing for each Ta outcome y and
prediction p, given per-station annual means of the out-
comeMy and the predictionsMp:

• R2, the proportion of variance accounted for, as
1 − mean((y − p)2)/Var(y).

• R2
spatial, the squared correlation between My and Mp.

• R2
temporal , the squared correlation between (y−My)

and (p−Mp).

For summaries on the per-station annual means
(R2

spatial), the sample size is the number of stations instead
of station-days (Kloog et al., 2014).

To verify that including Weather Underground data did
not impair prediction, we conducted variations of the cross-
validation procedure in which we excluded all Weather
Underground stations from testing. We computed the spa-
tial RMSE from a cross-validation that tests and trains in
non-Weather Underground stations, RMSENWU. Then
Weather Underground stations were allowed in training
and RMSEWU was computed in non-Weather Underground
stations and finally subtracted from RMSENWU. Thus, a pos-
itive difference in RMSENWU − RMSEWU means an
improvement in RMSE when Weather Underground was
included in training.

We constructed a learning curve in order to illustrate
how our model's predictive accuracy is influenced by the
size of its training data. This analysis was conducted for
mean daily temperature in 2018. We selected two folds to
hold out for testing, while using various subsets of the
remaining eight folds for training. The test folds were cho-
sen to have the closest unweighted RMSE under the cross-
validation as the overall RMSE for this year and dependent
variable. These test folds ended up comprising 16 stations
and 4,741 observations. There were seven rounds of analy-
sis and 100 simulation replicates for each round. In each
replicate of round 1, 10 stations were randomly selected,
2,500 observations were randomly selected from these
10 stations, and the model was trained on these 2,500
observations and tested on the test folds. Round 2 used
20 stations and 5,000 observations, round 3 used 30 stations
and 7,500 observations, and so on up to round 7 with
70 stations and 17,500 observations.

2.3.2 | Estimation of at risk population

We obtained population density information at the AGEB
level (equivalent to U.S. census tracts) from the 2010 Mexi-
can Population Census that was carried out by the Instituto
Nacional de Estadística y Geografía de Mexico (Instituto
Nacional de Estadística y Geografía (INEGI), 2016). AGEB
data are available as a polygon layer with population data
for all metropolitan areas in the MCM. From these records
we calculated the number of at risk days (above 30�C and
below 5�C) experienced by people ≥65 years old in the
MCM during the year 2010.

3 | RESULTS

Approximately one quarter to one third of LST data were
missing from both Aqua and Terra satellites and thus
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had to be imputed for our temperature model. The pro-
portions of missing LST data for both satellites were simi-
lar over time (23–34% missing daytime LST and 27–37%
missing night-time LST across all years), except for a
higher number of missing data in 2004 (52% daytime,
50% night-time).

For all years and dependent variables (i.e., minimum,
mean, and maximum Ta), we observed substantially
lower RMSE compared with the SD, indicating that our
model was effective in predicting temperature. Table 1
presents our model's performance in which we conducted
10-fold cross-validation for mean Ta. Tables S2 and S3
show cross-validation results for minimum and maxi-
mum Ta, respectively. Across all results, the range for
RMSEs was 0.9–1.9 K, with a mean of 1.5 K, whereas the
range for SDs was 3.7–5.4 K. Values of out of sample R2

ranged from 0.78 to 0.95 indicating good predictive abili-
ties in our models, particularly for maximum Ta (R2

0.80–0.92) and mean Ta (R2 0.89–0.95), compared to min-
imum Ta (R2 0.78–0.87). The spatial and temporal R2 also
showed good performance with average spatial R2 values
of 0.88, 0.94, and 0.90 for minimum, mean, and maxi-
mum Ta, respectively, and average temporal R2 values of
0.80, 0.88, and 0.85 for minimum, mean, and maximum
Ta, respectively. The averaged RMSEs for minimum,
mean, and maximum Ta were 1.64, 1.14, and 1.58 K,
respectively, and the spatially weighted RMSEs, in which

all monitored areas are equally important, were generally
worse than the unweighted RMSEs (by 0.33 K on aver-
age), but still reasonably small.

Figure 2 provides an example of observations and pre-
dictions at two different monitoring stations, in June of
2010 and 2018, showing improvement in 2018 Ta predic-
tions compared to 2010 for the southern region of More-
los as the number of stations in training increased
between these years.

Figure 3 shows that the distribution of prediction
errors in 2018 was similar by season in the MCM. Of the
23,558 predictions in the figure, 40 (1 in 589) have an
error of −5 K or below. The corresponding observations
are about evenly distributed by season. They come from
5 stations in the southern Valley of Mexico, 26 are from a
single Weather Underground station, and 10 are from a
single EMAS station.

We examined model performance by metropolitan
area in order to compare how our model performed in
areas with fewer stations relative to those with more sta-
tions. Table 2 summarizes cross-validated model perfor-
mance within each metropolitan area of the MCM with
>5 stations for 2018. By comparing the RMSEs to the SDs
of the Ta responses we can see how much more Ta varia-
tion is explained with our model. For results for all met-
ropolitan areas, see Table S4. There were large
differences in both SD and RMSE across municipalities.

TABLE 1 Prediction accuracy for the Megalopolis of Central Mexico: 10-fold cross-validation (CV) results for daily mean Ta predictions

from 2003 to 2019

Year Station-days (N) Number of stations SD RMSE R2 SDweighted RMSEweighted R2
spatial R2

temporal

2003 9,622 32 3.94 0.92 .95 5.02 1.21 .97 .92

2004 10,453 35 3.80 1.04 .92 5.20 1.37 .93 .89

2005 11,489 36 4.16 1.09 .93 5.55 1.40 .95 .91

2006 10,882 36 3.94 1.11 .92 5.17 1.40 .95 .87

2007 9,854 39 3.95 1.04 .93 5.21 1.29 .94 .87

2008 11,430 41 4.05 1.11 .92 5.52 1.44 .96 .89

2009 13,114 48 4.13 1.21 .91 5.89 1.48 .93 .90

2010 13,980 51 4.50 1.26 .92 6.35 1.71 .95 .91

2011 14,036 46 4.25 1.16 .93 5.84 1.46 .95 .89

2012 15,161 53 3.93 1.06 .93 5.38 1.35 .96 .87

2013 17,317 59 4.21 1.14 .93 5.23 1.32 .96 .86

2014 18,685 62 4.02 1.10 .92 5.21 1.29 .96 .86

2015 20,712 69 3.92 1.09 .92 5.38 1.23 .95 .84

2016 23,716 74 4.18 1.24 .91 5.37 1.33 .94 .88

2017 23,915 80 4.15 1.30 .90 5.45 1.47 .91 .87

2018 23,558 91 3.77 1.26 .89 5.09 1.29 .90 .88

2019 29,093 99 3.68 1.22 .89 5.27 1.31 .92 .85

Note: SD and RMSE are in K.
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Still, the improvement was at least 1 K in most cases. On
average, our models yield better predictions than the
naïve estimate of the mean for all Ta outcomes (i.e., our
predictions' measure of variation RMSE reduces the ran-
domness in all observed Ta outcomes better than the SD).

We evaluated model performance for each ground
monitoring network from which we obtained tempera-
ture records. Table 3 shows the accuracy in cross-
validated Ta predictions by type of network. The lowest
RMSE values were obtained for UNAM records for mini-
mum, mean, and maximum Ta predictions. The highest
RMSE values came from ESIMEs for minimum and max-
imum Ta, and Weather Underground for mean Ta. One
reason why UNAM had the lowest RMSEs for all Ta out-
comes despite having fewer stations in 2018 compared to

most networks is because UNAM stations were evenly
distributed across a smaller and more climatically homo-
geneous area, and potentially received higher mainte-
nance compared to the other networks.

Model performance was compared by season type:
cold-dry, warm-dry, and rainy. Table 4 presents the
average cross-validated prediction accuracy for each Ta
outcome by season for the entire MCM from 2003 to
2019. The lowest average RMSE values were for mean
Ta for all seasons. The highest RMSE values were
observed for minimum and maximum Ta during the
cold-dry and rainy seasons, respectively, and for mean
Ta in the cold-dry season. The highest precision
improvements were observed during the cold-dry season
for minimum Ta, and during the rainy season for mean
and maximum Ta.

Results from our test for impaired prediction from all-
owing data from Weather Underground stations in train-
ing, RMSEWU, compared to excluding them from
training, RMSENWU, showed that while the mean differ-
ence of −0.04 K in RMSENWU − RMSEWU favours train-
ing without Weather Underground stations, there was
considerable variation in RMSENWU − RMSEWU by
dependent variable and year. For instance, the inclusion
of Weather Underground stations improved the RMSE
for minimum Ta for 7 years. Table S5 shows
RMSENWU − RMSEWU for all years and dependent vari-
ables in the MCM.

Figure 4 shows the RMSE in two held-out folds that
can be achieved when training our model on various sub-
sets of the remaining data. The mean RMSE across simu-
lation replicates decreases rapidly as the training set

2010 2018

M
exico C

ity
M

orelos
1 10 20 30 1 10 20 30

15

20

25

30

15

20

25

30

Day of June

Te
m

pe
ra

tu
re

 (
°C

)

Observed

Predicted

FIGURE 2 Observed and

predicted Ta from CV, for station

8 (in Mexico City proper) and

station 24 (in the southern region

of the study area, in the state of

Morelos) in two different years

[Colour figure can be viewed at

wileyonlinelibrary.com]

C
oldD

ry
R

ainy
W

arm
D

ry

− 505−01
Prediction error

FIGURE 3 Density plots of the CV-predicted Ta minus

observed Ta in K for 2018, aggregated across stations but stratified

by season

4102 GUTIÉRREZ-AVILA ET AL.

http://wileyonlinelibrary.com


grows from 2,500 to 7,500 observations, then levels off
around 1.33 K. This example suggests that our sample is

more than large enough to achieve the best accuracy pos-
sible with this model in this region.

TABLE 2 Prediction accuracy by metropolitan area in the Megalopolis of Central Mexico: 10-fold cross-validation (CV) results for Ta

predictions for 2018

Metropolitan area Number of stations N Temperature SD RMSE SD – RMSE

Cuernavaca 7 1,717 Minimum 4.21 1.70 2.51

Mean 4.31 1.22 3.09

Maximum 4.41 1.93 2.47

Puebla-Tlaxcala 16 3,553 Minimum 3.22 1.61 1.61

Mean 2.75 1.15 1.61

Maximum 2.99 1.57 1.42

Mexico City 65 17,092 Minimum 3.56 1.76 1.80

Mean 3.18 1.27 1.91

Maximum 3.60 1.45 2.14

Note: SD, RMSE, and SD − RMSE are in K.

TABLE 3 Prediction accuracy by ground monitoring network in the Megalopolis of Central Mexico for 2018

Ta Network Station-days (N) Number of stations SD RMSE SD – RMSE

Minimum EMAs 2,740 14 5.66 1.92 3.75

ESIMEs 823 4 3.72 2.47 1.25

SIMAT 7,787 25 3.34 1.75 1.59

UNAM 3,187 12 2.76 1.04 1.72

Weather Underground 8,736 35 3.66 1.89 1.77

Mean EMAs 2,740 14 6.53 1.50 5.02

ESIMEs 823 4 2.93 1.10 1.82

SIMAT 7,787 25 2.77 1.04 1.73

UNAM 3,187 12 2.47 0.72 1.74

Weather Underground 8,736 35 3.20 1.51 1.68

Maximum EMAs 2,740 14 7.50 2.10 5.40

ESIMEs 823 4 3.31 2.15 1.16

SIMAT 7,787 25 3.22 1.26 1.96

UNAM 3,187 12 2.82 0.94 1.88

Weather Underground 8,736 35 3.54 1.77 1.76

Note: SD, RMSE, and SD − RMSE are in K.

TABLE 4 Prediction accuracy by season in the Megalopolis of Central Mexico: Average SD, RMSE, and SD − RMSE for minimum,

mean, and maximum Ta predictions from 2003 to 2019

Ta

Cold dry Warm dry Rainy

SD RMSE SD − RMSE SD RMSE SD − RMSE SD RMSE SD − RMSE

Minimum 3.65 1.82 1.84 3.85 1.76 2.09 3.35 1.47 1.88

Mean 3.70 1.16 2.54 4.08 1.13 2.95 3.66 1.12 2.53

Maximum 4.49 1.54 2.95 4.71 1.56 3.14 4.55 1.60 2.94

Note: SD, RMSE, and SD − RMSE are in K.
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Model predictions were made for each 1 × 1 km grid
cell in the entire prediction area for summarization and
Figure 5 shows the 95th percentile of the minimum and
maximum temperatures across days for each grid cell in
2018. In general, the inhabited areas were hotter than the
mountainous borders between municipalities. The south-
ernmost region of the MCM, comprising the metropolitan
areas of Cuernavaca and Cuautla, was substantially hot-
ter than the rest of the MCM.

Finally, we used population data to quantify human
exposure to extreme ambient temperatures for people
aged ≥65 years old in the urban AGEBs of the MCM in

2010 (Figure 6a). There were over 51 and 18 million
person-days of exposure to extreme low and high temper-
atures, respectively, in 2010. The highest number of
person-days of exposure to daily minimum Ta ≤5�C was
concentrated in the metropolitan areas of Toluca,
MCMA, Puebla-Tlaxcala, and Pachuca (Figure 6b). As for
exposure to daily maximum Ta ≥30�C, Figure 6c shows
that the metropolitan areas with a higher number of
person-days above this point were Cuernavaca, Cuautla,
MCMA, and Puebla-Tlaxcala.

Raw data, processed data, predictions, and code are
archived in the Zenodo open-access digital repository
(doi: http://doi.org/10.5281/zenodo.3362523).

4 | DISCUSSION

In this paper we present the performance of our spatio-
temporally resolved hybrid satellite-based land use
regression model for predicting Ta across the MCM, the
most populated megacity in North America. Our daily
predictions of minimum, mean, and maximum Ta are
the first highly resolved 1 × 1 km air temperature esti-
mates in the MCM. Our temperature models generated
Ta predictions for an extensive region spanning several
large metropolitan areas in central Mexico with diverse
geographic characteristics. We addressed multiple data
quality issues and incorporated many relevant predictor
terms, including LST with daily varying slopes, in our
models. Our high-quality Ta predictions for the MCM
have potential applications in a variety of settings such as
public health, urban planning, and climatology, among
others.

Consistent with results of similar studies carried out
in other regions with the aim of predicting daily Ta using
LST from MODIS (Benali et al., 2012; Kilibarda
et al., 2014; Rosenfeld et al., 2017), our model predicted
mean Ta more accurately than minimum or maximum
Ta. Compared to previous works, the average RMSE in
our models (1.64, 1.14, and 1.58 K for minimum, mean,
and maximum Ta, respectively) was similar to the RMSE
reported by Kloog et al., 2014 for the states from the
northeast U.S. region (RMSE ranged from 1.43 to 2.91)
for mean Ta, and to the RMSE reported by Shi et al.
(2016b) (average RMSE of 1.66 K) for mean Ta in the
southeast U.S. region. Results from Rosenfeld et al., 2017
for Israel were also similar to ours in terms of RMSE for
all Ta outcomes (1.65, 0.97, 1.53 K, for minimum, mean,
and maximum Ta, respectively) using LST from the
MODIS instrument on the Terra satellite alone and were
also similar to the RMSEs (1.65, 1.00, and 1.52 K for min-
imum, mean, and maximum Ta, respectively) using LST
data from MODIS on the Aqua satellite alone. Previous

FIGURE 4 Model performance learning curve for minimum

Ta in 2018 as a function of the size of its training data. Horizontal

bars represent the RMSE mean [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 5 Spatial pattern of the 95th percentiles of minimum

(a) and maximum (b) temperature across days for each 1 km2 grid

cell in the Megalopolis of Central Mexico for 2018 [Colour figure

can be viewed at wileyonlinelibrary.com]
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studies agree on how often LST data are missing and that
the main causes of missing LST records were related to
cloud cover, weather conditions, snow, and retrieval
errors. Despite the high amount of missing LST data from
both Terra and Aqua satellites in 2004 (�50%) in our
study region, compared to the rest of the years in the
period of study, we did not observe a substantially worse
performance in our models for this year (Kloog
et al., 2014; Shi et al., 2016b; Rosenfeld et al., 2017). Our
spatially weighted RMSEs were higher compared to those
reported in previous studies which could be related to a
better distribution in ground stations in other study
regions (Kloog et al., 2014; Shi et al., 2016b; Rosenfeld et
al., 2017). In other words, spatially weighted evaluation
in our models' performance suggests worse results for
subregions of the MCM with just a few ground monitor-
ing sites such as the metropolitan areas of Toluca and
Cuernavaca. In general, our model performance was sim-
ilar across seasons for all daily Ta predictions.

The utility of daily Ta predictions in epidemiology
from models with similar performance (i.e., RMSE) to
the ones reported in our study has been demonstrated by
Kloog et al. (2015) and Lee et al. (2016); both were able to
assign Ta exposure with less error compared with using a

closest-monitor approach, regardless of the distance
between a participant's residence and the closest ground
monitor. The lower spatial resolution of Ta from ground
stations increased exposure measurement error, to the
extent of not finding significant associations.

As shown in Figure 6, within the MCM there are
important contrasts in the spatial distribution of the at-
risk populations from exposure to extreme Ta, which jus-
tify temperature-related epidemiological research in this
region. The regions within the MCM with the greatest
exposure to low temperatures correspond to the metro-
politan areas of Mexico City, Pachuca, Toluca, and
Puebla-Tlaxcala. In turn, the areas with the highest con-
centration of hot temperatures are located in the metro-
politan areas of Mexico City, Cuernavaca, Cuautla, and
Puebla-Tlaxcala. This spatial distribution of temperatures
can be used for planning interventions aimed at mitigat-
ing the adverse effects from Ta on the population's health
within the MCM.

One of our goals was to use the best available Ta records
from ground stations in the MCM, so it is difficult to assess
if our model performance is similar across the years. The
underlying set of monitors that we used changed substan-
tially with an expansion of ground monitoring from 2003 to
2019 in the MCM. A model primarily designed for long-term
climatic trends might be fit to the smaller subset of long-
running stations (Oyler et al., 2015). It is also possible that
measurement error that is inherent to each monitoring net-
work affected performance in our models. To address this
limitation, we applied multiple criteria for quality assess-
ment of weather records from all data sources included in
our analyses. However, applying the same criteria to hetero-
geneous data sources to the same extent can be challenging,
especially when including crowdsourced information.
Unlike monitoring sites operated under international stan-
dards, private stations may not necessarily adhere to the
same operation principles, with the possibility of generating
data with a quality that is not suitable for research purposes
(Bell et al., 2015). In this regard, specific quality control
methods for crowdsourced data have been proposed (Droste
et al., 2020); most of them have included statistically based
steps (Chapman et al., 2017; Napoly et al., 2018) and com-
parisons to reference networks (Meier et al., 2017). Nonethe-
less, these methods might not be directly transferred to all
locations and crowdsourced datasets, because they are only
suitable for places with specific climatic characteristics and
specific crowdsourced techniques, may require high-quality
reference data from dedicated urban climate observational
networks, and are also dependent on records from other
physical variables, which are not always available in all
weather stations (Meier et al., 2017; Droste et al., 2020).
Thus, replication of such methods in different settings such
as the MCMmay require some adaptations.

FIGURE 6 Spatial distribution of population density (a),

person-days exposure to ≤5�C (b) and ≥30�C (c) for each 1 km2

grid cell in the Megalopolis of Central Mexico for people ≥65 years

old for 2010 [Colour figure can be viewed at

wileyonlinelibrary.com]
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Because no reference urban-climatic networks exist
within the MCM, implementation of this approach for
quality assessment of Weather Underground records in
the metropolitan areas that make up the MCM is not
possible. Also, the Weather Underground network in
our study region includes multiple types of weather sta-
tions (see Table S1); then, quality control methods
developed for specific types of weather stations such as
Netatmo must be adapted to work in our study region.
We implemented a quality assessment approach that
was not dependent on a dedicated reference network
and was not intended to be used just on a specific type
of data source. In addition, we proposed and
implemented a geostatistical filter to remove stations-
days considered as “deviations” by comparing observa-
tions from all networks to inverse-distance-weighted
interpolations of temperature from neighbouring moni-
toring sites (excluding Weather Underground), within
similar ranges of elevation. In the end, our quality
assessment approach filtered out more observations
from Weather Underground than from any other net-
work, emphasizing the importance of quality assessment
of crowdsourced information. We report that 26 of the
40 errors of −5 K or below in 2018 mean Ta were from
a single Weather Underground station which could be
caused by the inappropriate microscale siting of that
respective site (e.g., next to a wall), resulting in biased
measurements from that station which are small enough
in magnitude to avoid flagging by our deviance criteria.
Overall, the rarity of errors of this magnitude (1-in-589)
and the robustness of model results to the exclusion of
the Weather Underground network give us confidence
that the trade-offs of stringency and data availability are
appropriate for our goals.

For estimating daily Ta, our model improves on previ-
ously used methods by incorporating satellite data to pro-
duce more accurate predictions for any given location
within the MCM. Studies conducted in this region that
aimed to estimate temperature variations beyond the spa-
tial coverage of meteorological ground stations are scarce
and not suited to generate Ta estimates with adequate
spatiotemporal resolution (Carrera-Hernández and
Gaskin, 2007). The use of LST data from MODIS (alone
and limited to cloud-free conditions) in studies per-
formed in subregions of the MCM have sought to exam-
ine seasonal variations in the urban heat island (UHI) in
Mexico City using 8-day LST averages in 2006 (Cui and
de Foy, 2012) and to correlate the abundance of the den-
gue virus mosquito vector with 28–29-day LST average in
Puebla City (Moreno-Madriñán et al., 2014). None of the
above studies generated daily predictions of Ta with a
potential use in intra-urban assessment of human expo-
sure to extreme temperatures.

Thus far, exposure assessment of Ta in epidemiologi-
cal research in Mexico has relied heavily on measure-
ments from a sparse network of ground stations that are
not always located close to the populations under study
(O'Neill et al., 2005; Bell et al., 2008; McMichael
et al., 2008; Hurtado-Díaz et al., 2019). The data from dif-
ferent monitoring networks can be challenging to work
with because they are often organized heterogeneously
(i.e., different file formats, temporal resolutions, time
zones, differences and changes in the organization of
records over time, and often coding errors), which may
explain why only some and not all ground station data in
Mexico have been used in previous epidemiological stud-
ies. The trade-off is a very coarse spatial resolution, and
these studies assigned daily minimum, mean, and maxi-
mum Ta exposures at spatial scales ranging from tens to
a hundred kilometres.

While ground stations collect vital meteorological
information, their locations constrain the utility of their
data for epidemiological research particularly in urban
areas. When placing ground stations, most networks fol-
low international standards that avoid interference from
large buildings, reflective surfaces, and other sources of
heat or radiation (Llansó, 2003). This approach may pre-
clude meteorological stations from being located in areas
of interest for Ta-related spatial epidemiology. For these
reasons, it is important to consider the use of different
quality-controlled data sources and data fusion tech-
niques to better reflect Ta variability within large urban
areas. The inclusion of spatiotemporal covariates to pre-
dict Ta should improve on ground station data alone and
would more accurately estimate the population's actual
exposures (Pelta and Chudnovsky, 2017; Dirksen
et al., 2020).

Biometeorological indices have been alternatively
used to assess heat stress in epidemiology research
(Basu, 2009). These biometeorological indices include
apparent temperature, humidex, heat index, and net
effective temperature, among others. The aim of these
indices has been to reflect the actual ambient heat per-
ceived by humans as a function of air temperature and
different metrics of humidity (McGregor et al., 2015).
However, such metrics are also more difficult to map at
highly resolved spatial scales from remote sensing com-
pared to LST. Also, the relationship between LST and
biometeorological indices is complex because of the influ-
ence of factors such as wind speed and wind direction in
the mass of air above the surface, land surface heat
capacity, and near-surface water available for evapotrans-
piration, and these data are not always available in all
weather networks (Ho et al., 2016).

Although our temperature model offers robust predic-
tions compared to more commonly used citywide Ta
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exposure estimates, our model has limitations related to
its spatial and temporal resolution. It is possible that the
1 × 1 km grid cell size in our model may be too coarse of
a spatial resolution for capturing biologically relevant
exposures for specific types of health conditions, in steep
areas with large changes in elevation, and also for expo-
sure assessment in the different microenvironments
where individuals spend most of their time. There is evi-
dence that spatial resolutions lower than 50 m may
underestimate the UHI (Sobrino et al., 2012), a phenom-
ena that has been linked to different mortality and mor-
bidity outcomes (Heaviside et al., 2017). Also, Ta in
urban areas can change rapidly in short distances given
the influence of specific city characteristics such as prox-
imity to green areas and water bodies, surface albedo, sky
view factor, and construction materials, which can
induce significant variations in the actual temperature
experienced by individuals within 1 × 1 km grid cells in
large metropolitan areas (Schinasi et al., 2018). On the
other hand, there is limited availability of remote sensing
products with finer spatially resolved temperature data,
such as the satellite data derived from USGS Landsat sat-
ellites. However, while Landsat has a higher spatial reso-
lution, its temporal resolution is limited: once every
16 days under cloud-free conditions (Tomlinson
et al., 2011; Ho et al., 2014). Additionally, our daily tem-
poral resolution may lead to exposure misclassification
for specific acute health outcomes occurring at finer time
scales. For instance, Rowland et al. (2020) assessed the
impact of hourly temperature predictions on myocardial
infarctions incidence in New York State, finding critical
windows of exposure in the hours leading up to the onset
of the event (Rowland et al., 2020). With the development
of computational resources, numerical models like the
Weather Research and Forecasting (WRF) model offer an
alternative for capturing high-resolution characteristics
of urban climate and have been successful at simulating
2 m Ta and extreme Ta episodes such as UHIs (Yang
et al., 2012; Jandaghian et al., 2018; Li et al., 2019). High-
resolution numerical models for studying urban climate
at subkilometre scales are now possible (Jandaghian and
Berardi, 2020). Recently, numerical models have been
successfully employed for human exposure assessment to
extreme temperatures and the projection of climate
change scenarios in public health research
(Ha et al., 2017; 2018; José et al., 2017; Lou et al., 2019).
Potential limitations documented for these models are
related to the available options in the WRF solver, exclu-
sion of anthropogenic heat emissions leading to underes-
timation in Ta, the extensive analysis of data needed for
daily long-term simulations over years (including land
use and/or urban canopy data), and comparison of area-
averaged data from simulations to observational data

(point Ta observations) from reference networks (Yang
et al., 2012; Jandaghian et al., 2018).

There are also potential limitations pertaining to the
replicability of our methods in other places and to the
comparability of our results to other studies using
MODIS products to predict Ta. Previous studies in other
regions have utilized different modelling techniques,
have climates that are not similar to the MCM, and they
have different data availability and relevance of spatial
predictors such as detailed land use predictors, road den-
sity, and distance from water bodies (Kloog et al., 2014;
Rosenfeld et al., 2017). Nonetheless, similar modelling
approaches can generally be adopted elsewhere to
improve existing Ta estimates based on limited data
sources (e.g., ground stations or satellite data only).

We expect that the three different daily Ta predictions
from our model can be used to improve results from prior
epidemiologic research on well-defined Ta-related pathol-
ogies in the MCM such as cardio-respiratory diseases and
emergent vector-borne diseases (dengue, zika, and chi-
kungunya). They can also be used to explore new hypoth-
eses linking Ta with birth outcomes, cardiometabolic
outcomes, cognitive function, and mental health disor-
ders (Kloog et al., 2015; Dai et al., 2016; Wallwork
et al., 2017; Zanobetti et al., 2017). Our Ta predictions
will facilitate investigations of the health impacts from
UHI in the different metropolitan areas of the MCM and
have the potential to be harnessed for early warning sys-
tems, which are increasingly important as we experience
climate changes and extreme variations in temperature.
Our model may assist decision-makers in public health
and meteorology in the MCM to design interventions
aimed to reduce population health risks from exposure to
dangerous temperature levels. While it is not a forecast
system, our temperature model has the capacity to aug-
ment existing early warning systems by pinpointing more
hotspots across the entire MCM and aiding the people
who live there. Our exposure maps on people aged
≥65 years old exposed to extreme cold (≤5�C) and hot
(≥30�C) temperatures support the idea that alert systems
should consider differences in local meteorology, demo-
graphics, and urban structure to address health impacts
from extreme temperatures in a megalopolitan context
(McGregor et al., 2015).

Finally, to increase the utility of our prediction model
and adhere to best practices for open and transparent
research Wilson et al., 2017, we have archived the raw
and cleaned station data, our temperature predictions,
metadata, and all of the R code used in this project in a
citable and open research repository (doi: http://doi.org/
10.5281/zenodo.3362523). This allows others studying dif-
ferent parts of the world to reproduce, modify, and build
on our work for the advancement of exposure science.
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5 | CONCLUSION

Evidence about the intra-urban health effects from
extreme temperatures are much needed in the Megalopo-
lis of Central Mexico (MCM), which includes the Mexico
City Metropolitan Area and several neighbouring major
metropolitan areas. The aim of our study was to generate
daily predictions of Ta with a spatial resolution of
1 × 1 km from 2003 to 2019, with application in public
health in this region. For this we used Ta records from
ground monitors and LST data from the MODIS instru-
ment on the Terra and Aqua satellites as our main
predictor of daily Ta. We calibrated LST to Ta using
mixed-effect models, land use predictors, and separate
slopes for each day. Performance of our Ta models
showed that daily minimum, mean, and maximum Ta
can be reliably predicted using daily LST data even across
the heterogeneous geography of the MCM with high
accuracy. To illustrate the utility of our Ta models for
public health, we calculated the number of days in the
year 2010 that people ≥65 years old were at risk of expo-
sure to extremely low or high temperatures. We esti-
mated over 51 million person-days of exposure to
extreme cold and 18 million person-days of exposure to
extreme heat, and these exposures were concentrated in
particular metropolitan areas where critical public health
efforts may be most needed. Our findings reveal the
potential for our daily Ta predictions to improve epidemi-
ological research in this region.
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