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A B S T R A C T   

Background: Accurate and precise estimates of ambient air temperatures that can capture fine-scale within-day 
variability are necessary for studies of air temperature and health. 
Method: We developed statistical models to predict temperature at each hour in each cell of a 927-m square grid 
across the Northeast and Mid-Atlantic United States from 2003 to 2019, across ~4000 meteorological stations 
from the Integrated Mesonet, using inputs such as elevation, an inverse-distance-weighted interpolation of 
temperature, and satellite-based vegetation and land surface temperature. We used a rigorous spatial cross- 
validation scheme and spatially weighted the errors to estimate how well model predictions would generalize 
to new cell-days. We assess the within-county association of temperature and social vulnerability in a heat wave 
as an example application. 
Results: We found that a model based on the XGBoost machine-learning algorithm was fast and accurate, 
obtaining weighted root mean square errors (RMSEs) around 1.6 K, compared to standard deviations around 
11.0 K. We found similar accuracy when validating our model on an external dataset from Weather Under-
ground. Assessing predictions from the North American Land Data Assimilation System-2 (NLDAS-2), another 
hourly model, in the same way, we found it was much less accurate, with RMSEs around 2.5 K. This is likely due 
to the NLDAS-2 model’s coarser spatial resolution, and the dynamic variability of temperature within its grid 
cells. Finally, we demonstrated the health relevance of our model by showing that our temperature estimates 
were associated with social vulnerability across the region during a heat wave, whereas the NLDAS-2 showed a 
much weaker association. 
Conclusion: Our high spatiotemporal resolution air temperature model provides a strong contribution for future 
health studies in this region.   

1. Introduction 

There is growing interest in the association between temperature and 
health. Extreme temperatures are associated with adverse pregnancy 
outcomes (Zhang et al., 2017), cardiovascular events (Lin et al., 2009), 
and mortality (Gasparrini et al., 2015), among other adverse events. 
These associations are nonlinear, with both low and high temperatures 
(compared to moderate temperatures) relating to higher risk of an 
adverse event (Gasparrini et al., 2015). Most studies have focused on 
daily mean or maximum temperature, but some studies have shown that 

hourly temperature and diurnal temperature variation are related to 
heart attacks (Rowland et al., 2020) and mortality (Shi et al., 2015). 
Consequently, highly spatially and temporally resolved temperature 
models are useful for refined exposure assessment in health studies. 

Urban areas are often warmer than their suburban or rural sur-
roundings, a phenomenon known as the urban heat island effect. The 
difference can be on the order of 10 K on calm, clear nights, depending 
on factors such as vegetation, building geometry, construction materials, 
surface permeability, and anthropogenic heat sources (Oke, 1982). 
Since these factors vary in space, even within urban areas, near-surface 
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air temperature need not decrease linearly with distance from a city 
center, and can vary substantially between neighborhoods of a city. 
Thus, a city can be described as a heterogeneous mosaic with hotspots, 
forming an “urban heat archipelago” (Buyantuyev and Wu, 2010). For 
example, in Gothenburg, Sweden, from 1988 to 1990, mean temperature 
varied by up to 2.7 K between dense buildings and a nearby open area, 
and the 4 K mean temperature difference between the city center and a 
large park was similar to the mean temperature difference between the 
city center and rural surroundings (Eliasson, 1996). In Portland, Oregon, 
in the summer of 2006, a large park was often 2–4 K cooler than the 
city’s rural surroundings, while the city’s built areas were 2–5 K warmer 
(Hart and Sailor, 2009). 

Another important finding is that temperature is related to social 
disadvantage. A study in Phoenix, Arizona, found that remotely sensed 
daytime land surface temperatures were 0.36 K cooler for each addi-
tional $10,000 in median family income of a census block group 
(Buyantuyev and Wu, 2010). Similarly, across the US, neighborhoods 
with historic housing discrimination (redlining) have been found to 
have higher summertime intra-urban land surface temperatures (Hoff-
man et al., 2020). Better exposure assessment, then, is necessary for 
heat-vulnerability and health-disparities research. Furthermore, many 
studies have found that within-day temperature variation can be large in 
any given location. While many health studies use mean daily temper-
ature, it is possible that extrema or diurnal variation are also relevant to 
human health (Vicedo-Cabrera et al., 2016). 

Many data products offer measures of temperature, but they often 
have substantial drawbacks for health applications. For example, many 
satellite instruments estimate land surface temperature (LST), but near- 
surface air temperature, measured at ground-based monitors, is more 
relevant for human thermoregulatory capacity. Those that do provide 
air temperature have a coarse resolution that are consequently inade-
quate for human health; for example, the AIRS temperature profile 
product has a 50-km horizontal resolution (Teixeira, 2013). While there 
are weather stations throughout the US that measure temperature, they 
are unevenly placed with regard to human populations (Kloog et al., 
2014). Policy actions are often made using weather reports from mete-
orological stations (e.g., airport weather stations) that may not represent 
finer-scale variation in temperature where people live. When stations 
are tens of kilometers away from people, there is substantial uncertainty 
in exposure assignment, especially in urban areas where temperature 
varies dramatically over small distances. Many different 
temperature-prediction models have arisen as a result of such chal-
lenges. For example, the North American Land Data Assimilation System 
(NLDAS-2) model has an hourly temperature product at a coarse 0.125◦

grid (e.g., each cell covers about an 11 km × 14 km rectangle in New 
York State) throughout the contiguous US (Rui and Mocko, 2019). Kloog 
et al. developed daily 1-km mean temperature models across the 
northeastern US (2014) and France (2017). Oyler et al. developed a 
daily 800-m model with mean, minimum, and maximum temperature 
predictions (2015). Most recently, Crosson et al. developed a daily 1-km 
maximum and minimum temperature model (2020). These models all 
have notable strengths and limitations. Most of these models assume 
linear relationships between variables, but allowing for nonlinear re-
lationships may be important to account for vast changes in temperature 
across space and time. Furthermore, the models have limited temporal 
resolution. For example, the models that estimate maximum and mini-
mum temperatures do not estimate when during the day these values 
were attained. High temporal resolution is important for health studies, 
which may have highly time-resolved outcome data. Finally, researchers 
may overestimate the performance of models if they do not account for 
variation in the density of ground observations. 

In this study, we created and compared the performance of five 
different statistical temperature models that integrate satellite and 
ground-based observations, and we identified the best model based on 
predictive accuracy and computational efficiency. We included both 
linear and non-linear models and we evaluated our models with spatial 

cross-validation (CV) and spatial weighting. We demonstrated the utility 
of the best model by comparing predictions across areal measures of 
social vulnerability, which is of particular interest for studies of socio-
economic status and health. 

2. Materials and methods 

We fit models predicting ground-based air-temperature measure-
ments per combination of year and hour; for example, we fit one distinct 
model for midnight UTC in 2013, another for 1 AM UTC in 2013, and so 
on. Our goal was to compare five types of models and select the best 
performer. To select the model type, we first constructed four models, 
considering only 2 h of the day in each of two years. We used ten-fold CV 
to compare the accuracy of the models and selected a single type of 
model. We compared the selected model to NLDAS-2, validated it with a 
separate monitoring network, and examined how individual predictors 
contributed to the predictions. Finally, we made predictions across the 
study region and time period. Our summarized approach and procedures 
are depicted in Fig. 1 and detailed below. 

2.1. Study region and time period 

We modeled temperature for each year from 2003 through 2019. Our 
models covered the Northeast and Mid-Atlantic US, namely the states of 
Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Con-
necticut, New York, New Jersey, Delaware, Pennsylvania, Maryland, 
West Virginia, and Virginia, plus Washington, DC (Fig. 2). We repre-
sented the study region using the same grid as our satellite inputs, which 
consists of square cells, approximately 927 m on a side (nominally 1 
km), in a sinusoidal projection. Restricted to our study region, the grid 
had 750,808 cells and covered a total of 644,670 km2. 

2.2. Ground-based air temperature 

We obtained near-surface air-temperature data from the Meteoro-
logical Assimilation Data Ingest System (MADIS; NOAA, 2018), which is 
maintained by the US National Atmospheric and Oceanic Administra-
tion (NOAA). MADIS is a database assimilating weather observations 
from networks around the world, with the greatest data density in North 
America. It spans from 2001 to the present, includes automated quality 
control checks, and enforces uniformity in reported data, including 
metadata. The number of observations has grown over time as NOAA 
has continued to ingest data from new partner agencies. MADIS provides 
access to many datasets, but we used the meteorological surface obser-
vations from the National Mesonet dataset of the US, which is available 
in the MADIS research data archive to registered users. All MADIS sta-
tions we selected are shown in Fig. 2. 

We used air temperature observations from Weather Underground to 
externally validate our models. Weather Underground is a private 
commercial network of over 250,000 personal weather stations around 
the world, many of which are in the US and Europe (The Weather 
Company, 2018). Thus, Weather Underground served as a useful inde-
pendent dataset to test the performance of our models at new locations 
in the same region. For context, there are 705 1-km grid cells with 
co-located MADIS and Weather Underground stations, 3490 grid cells 
with only MADIS stations, and 1362 grid cells with only Weather Un-
derground stations, while the remainder have neither station type 
(Figure S1). 

We applied several filters and quality control checks to the MADIS 
and Weather Underground data, which are inspired by similar ap-
proaches taken by others (Dirksen et al., 2020; Gutiérrez-Avila et al., 
2021; Napoly et al., 2018). Each dataset and year was processed 
independently: 
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1. Select a single observation per named station ID and hour. Obser-
vations at more common locations (i.e., longitude–latitude pairs) are 
preferred.  

2. Remove observations outside NOAA’s official extreme-temperature 
records for the study region: − 47 ◦C and 45 ◦C (NOAA, 2020).  

3. Select a single observation per location and hour. Observations 
closer to the hour are preferred.  

4. Compare each observation to its two nearest neighbors (no more 
than 100 km away) at the same hour. If the temperature differs from 
that of both neighbors by 20 K or more, drop all data for that station. 

Fig. 1. Summarized flowchart of the near-surface air-temperature modeling strategy for 2003–2019 across the Northeast and Mid-Atlantic United States. Paral-
lelograms represent datasets and rectangles are processes. All model types use the same predictors, except for the IDW surface model type, which only uses the IDW 
surface. LST = land surface temperature, EVI = enhanced vegetation index, IDW = inverse distance weighting, TPI = topographic position index. 

Fig. 2. The study region. The black lines are state 
borders, and the red points are grid cells with at least 
one MADIS station in at least one year of the study. 
Partial transparency is used to visualize areas with 
overplotting where multiple stations are sufficiently 
close together to make their points appear one on top 
of the other at this spatial resolution and for the scale 
represented. (For interpretation of the references to 
color in this figure legend, the reader is referred to 
the Web version of this article.)   
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5. Select a single location for each 1-km Moderate Resolution Imaging 
Spectroradiometer (MODIS) grid cell. Locations that are more com-
mon are preferred. 

2.3. Predictors 

As predictors, we included 34 variables (Table 1), further details of 
which are given below. 

2.3.1. Satellite-based land surface temperature 
The MODIS is an instrument aboard NASA’s Aqua and Terra satellites 

that provides LST data across the study region at 1-km (more precisely, 
927-m) resolution. Each satellite provides a daytime and a nighttime 
retrieval, for a total of up to 4 LST retrievals per day, with Terra overpass 
times at approximately 10:30 AM/PM and Aqua at 1:30 AM/PM local 
solar times. We matched each of our hourly observations to the 
temporally closest overpass of each of the four types. The LST data from 
the Collection 6 processing were downloaded for both satellites (Wan 
et al., 2015a, 2015b). Observations whose quality-control codes indi-
cated an average error greater than 2 K were treated as missing. The 
rates of missingness per year, aggregating across days, satellites, and 
overpasses, ranged from 41% to 47%. 

2.3.2. Topography 
We used a series of topographical measures to account for important 

physical processes related to the warming and cooling of Earth. Land 
cover was derived from the 2011 National Land Cover Dataset, which 
provides 16 categorical land cover classes at a 30-m spatial resolution 
(Homer et al., 2015). Given that our ultimate model has a 1-km reso-
lution, we computed the proportion of each class in each of our 1-km 
grid cells. This dataset also has a 30-m impervious surface layer, of 
which we similarly computed the mean for each grid cell. Finally, we 
used focal-window processing to compute the proportion of surface 
water within a 15-km radius of each grid cell. 

We incorporated two time-invariant measures of topography: void- 
filled elevation from the NASA Shuttle Radar Topography Mission at 
1-arc-second spatial resolution (Farr et al., 2007), and multi-scale 
topographic position index (Theobald et al., 2015) derived from the 
USGS 1/3-arc-second digital elevation model. The topographic position 
index is a continuous measure of relative topography, that is, whether a 
point location is a peak or is in a valley. Higher values indicate a greater 
peak. The elevation is at approximately 30-m resolution, and the topo-
graphic position index is at approximately 10-m resolution, so we 
computed the mean for each of our grid cells. 

2.3.3. Other predictors 
A monthly enhanced vegetation index (EVI) was included in models 

as a measure of vegetative cover and was derived from Collection 6 of 

Terra satellite retrievals (Didan, 2015). The rate of missingness was 
2.6% in 2003, but ranged from 0.030% to 0.092% per year in the 
remaining years. 

The longitude and latitude coordinates of ground observations were 
included to allow for spatial variation along east-west and north-south 
axes. Seasonality was included using trigonometric time terms: sin(2π 
(d - 1)/n) and cos(2π(d - 1)/n), where d is the day of the year and n is the 
total number of days in the year. 

3.4. Imputation for missing data 

To impute missing values in the four LST variables and EVI, we used 
a simplified similar-pixels method inspired by Yu et al. (2019). First, all 
of the grid cells in the study area were split with 30-means clustering, 
specifically with the MacQueen algorithm (MacQueen, 1967). We used 
continuous heat-insolation load index (CHILI) (Theobald et al., 2015) to 
help with imputation. CHILI was derived from the National Elevation 
Dataset (Gesch et al., 2002). We used CHILI to estimate the relative 
impact of incident radiation in an area, considering attributes such as 
latitude, aspect, and slope. The clustering variables were elevation, 
topographic position index, CHILI, percent impervious surface, percent 
water (in a 15-km buffer), and 2015 population density. These variables 
are all temporally invariant, so we could use a single set of clusters for all 
years and hours. Then, for each cluster, year, and satellite variable 
(Terra day temperature, Terra night temperature, Aqua day tempera-
ture, Aqua night temperature, or EVI), we fit a linear model with ordi-
nary least squares (OLS). The outcome was the satellite variable, and the 
predictors were the clustering variables, longitude, latitude, and one 
dummy variable for each time unit (day for LST, month for EVI) with 
more than 100 non-missing values of the outcome. In the case of LST, 
these models were fit separately within months. We trained each model 
on the non-missing values and used its predictions to replace missing 
values. Hence, we had observed or imputed LST and EVI variables for all 
of our air temperature-prediction models. 

3.5. Predictive modeling 

3.5.1. Hot and cold hours for initial evaluation 
For model development, we restricted attention to 2 hours in each of 

two years, 2004 and 2013, both for computational speed and to ensure 
we had data for testing models that we had not already used for selecting 
models. For each station and UTC-based day of hourly temperature 
observations, using all years of data, we recorded the hottest and coldest 
hour. We found that the most frequent hottest hour of the day was 8 PM 
UTC (3 PM Eastern Standard Time) and the most frequent coldest hour 
was 10 AM UTC (5 AM Eastern Standard Time). We refer to these times 
as the “hot hour” and “cold hour”, respectively. 

3.5.2. Model performance and selection 

3.5.2.1. Spatial cross-validation. Prediction modeling often uses CV for 
model evaluation. A standard CV approach might involve splitting the 
observations randomly into 10 groups (folds) and training the model 10 
times, once without each fold, using the remaining data. We have found 
that without further adjustments, this approach can yield overly opti-
mistic results in spatiotemporal modeling (Just et al., 2020a, 2020b), so 
we used a spatial CV scheme to prevent our models from being trained 
on stations close to the stations for which they were making predictions. 
For each year, we randomly split stations into 10 folds; for each fold, we 
excluded all stations from training that were within 8164 m of a station 
in the test set. The quantity 8164 m was the median distance of all grid 
cells from their nearest station in 2018. Thus, when making predictions 
in 2018 to arbitrary grid cells, one makes predictions 8 km, on average, 
away from the nearest station. Setting exclusion zones of this size gave 
us a CV scheme that is representative of how the model will be used. 

Table 1 
All the variables used as inputs to the predictive models.  

Variable types Variables 

Spatial gradients 1) Longitude; 2) Latitude; 3) Inverse-distance weighted air 
temperature; 4) Elevation; 5) Topological position index; 

Temporal 
gradients 

6) Sine and 7) Cosine terms for seasonality; 

MODIS LST 8) Terra day; 9) Terra night; 10) Aqua day; 11) Aqua night; 
MODIS 

Vegetation 
12) Enhanced vegetation index; 

Land cover 13) Water; 14) Developed - open space; 15) Barren; 16) 
Deciduous forest; 17) Evergreen forest; 18) Mixed forest; 19) 
Shrub/scrub; 20) Grassland/herbaceous; 21) Pasture/hay; 22) 
Cultivated crops; 23) Woody wetlands; 24) Emergent herbaceous 
wetland; 25) Impervious surface; 26) Water within buffer; 

Landforms 27) Peak/ridge; 28) Upper slope; 29) Upper slope - flat; 30) 
Lower slope; 31) Lower slope - warm; 32) Lower slope - flat; 33) 
Valley; 34) Valley - narrow  
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3.5.2.2. Weighted evaluation. An issue with CV, given the non-random 
spatial arrangement of ground monitors, is that it would tend to 
emphasize model performance in areas that are dense with monitors. 
This emphasis is problematic because the purpose of our model is to 
predict temperatures in areas that do not already have good monitor 
coverage. Hence, we created weighted metrics by dividing the 750,808 
cells of the master grid into 100 approximately equally sized evaluation 
regions (Figure S2), and assigning a total weight of 1 to each group of 
observations in a single region at a single time. Within these groups, 
observations were weighted equally. We chose the evaluation regions 
with an algorithm that iteratively assigns cells in contiguous square 
rings. 

3.5.2.3. Selection of model type and comparisons. Our model-selection 
process was based on minimizing the weighted prediction error in CV, 
being mindful of diminishing returns as computation time increases. 
When comparing models, we first present the standard deviation (SD) of 
the dependent variable as a measure of the overall variability that we 
seek to explain. We focus our model evaluation and model comparison 
on the root mean square error (RMSE), which can be compared to the SD 
to see the decrease in error attributable to the model. In this way, the SD 
serves as a useful benchmark to contextualize our prediction error, e.g. a 
RMSE of 2 K might be considered strong performance if the SD is 10 K, 
but not as strong if the SD is 4 K. We also present our results alongside 
the prediction error from NLDAS-2 estimates of air temperature at 2-m 
height. In this case, the prediction for a given station at a given hour 
is simply the NLDAS-2 temperature for the NLDAS-2 grid cell in which 
the station falls. This comparison is provided since NLDAS-2 estimates 
have been used in human health studies (Rowland et al., 2020; Wu et al., 
2018) and public health tracking regarding heat impacts (Centers for 
Disease Control & Prevention, 2020). 

3.5.3. Statistical model types 
We considered five types of models, varying from simple to complex, 

and compared their performance using CV. Except for the simplest 
(IDW), all models used the same predictors. 

3.5.3.1. Inverse distance weighting procedures. The simplest model, IDW, 
was both considered alone and used as a predictor in all other models. To 
calculate the IDW surface, we predicted the temperature at a grid cell as 
the mean of temperatures at all other stations (except those withheld for 
CV) at the same time, weighted by the reciprocal of the squared distance 
(1/d2, where d is distance) (Quagliolo et al., 2020; Samanta et al., 2012). 
IDW surfaces are typically constructed using all other stations to make 
predictions at a given station, withholding only the value at the station 
being predicted. However, such an IDW scheme, when used with the 
dependent variable in CV, leads to leakage of test data into the training 
set, with commensurate overfitting and overly optimistic assessment of 
model performance. To avoid this leakage, we developed an IDW 
method that draws on differing subsets of the stations for predictions 
made to each location, based on our CV folds. When considering IDW 
alone as a model, each point calculated in the IDW used only those 
points not in the test set, so there were 10 sets of allowed stations. When 
incorporating IDW as a predictor for other models, it was necessary to 
withhold sets of stations not just for the observations in the test fold to 
avoid leakage, but also points within the same fold as each training 
station to avoid overfitting of the IDW. We sped up the computation of 
IDW by caching distance weights and sets of allowed stations, which 
saved time because we needed to make IDW interpolations for many 
different times at the same locations. 

3.5.3.2. Regression models. Another set of models was based on 
regression. We considered 1) OLS, 2) a mixed-effects linear model with a 
set of per-day random intercepts in place of the trigonometric time 
terms, and 3) a generalized additive mixed model (GAMM) that took the 

mixed-effects model and added a three-way tensor-product smooth of 
longitude, latitude, and the integer day of the year (Wood, 2006). Each 
dimension of the penalized tensor-product smooth was allocated an 
upper limit of 10 degrees of freedom. 

3.5.3.3. XGBoost models. Our final model type used a machine-learning 
algorithm called extreme gradient boosting (XGBoost; Chen and 
Guestrin, 2016). XGBoost grows a sequence of regression trees, fitting 
each tree to the residual of the assemblage of all prior trees, and uses 
several kinds of tunable regularization, allowing it to strike a balance 
between flexibility, avoidance of overfitting, and computation time. We 
increased parsimony by fixing the number of trees at 100 and using 
Dropouts meet Multiple Additive Regression Trees (DART; Vinayak and 
Gilad-Bachrach, 2015), a dropout method that ignores a randomly 
selected subset of existing trees during the construction of each new tree. 

We tuned six of XGBoost’s hyperparameters with our data for the 
cold hour in 2013 and the hot hour in 2004. We first randomly selected 
50 sets of hyperparameters with a Latin hypercube sampling technique, 
ensuring broad coverage of the six-dimensional hyperparameter space 
(Just et al., 2020a, 2020b; Stein, 1987). Then we performed CV in each 
of the two data slices to assess each hyperparameter set. On the basis of 
combined performance, we chose the following hyperparameters: eta 
(learning rate) = 0.24; gamma (minimum split loss) = 0.023; lambda (L2 
regularization) = 0.021; alpha (L1 regularization) = 5.9; max_depth 
(maximum tree depth) = 9; and dropout rate = .01, as defined in the 
XGBoost documentation (XGBoost developers, 2020). 

3.6. External validation 

After model selection, we assessed the model’s performance using a 
monitoring network on which the model was never trained: Weather 
Underground. We assessed predictive performance, via RMSE, for all 
available hourly observations at the 2067 Weather Underground per-
sonal weather stations in the study region in 2013. 

3.7. Interpreting variable importance and model predictions 

All of our predictors have physiographic or topographic reasons for 
inclusion because they capture various sources of spatial and temporal 
variability in air temperature. Because the empirical relationships fit by 
XGBoost and the relative contribution of each predictor is not easily 
summarized, we used Shapley additive explanations (SHAPs; Lundberg 
et al., 2020) to interpret our XGBoost models. The method uses game 
theory to decompose each prediction into a sum of real numbers 
(SHAPs), one for each predictor, plus a bias term that applies to all 
predictions. Thus, a SHAP can be interpreted like the product of a co-
efficient and predictor value in OLS; for example, a SHAP of − 2 means 
the model attributes a 2-unit decrease in its prediction to that predictor. 
The distribution of SHAPs can be used to understand variable contri-
butions across the distribution of the predictor, aiding in model inter-
pretability. The mean absolute SHAP of a given predictor is a summary 
measure of feature importance. 

3.8. Model application to social vulnerability 

Recent literature has shown that extreme summertime temperatures 
are associated with area-level measures of racism and socioeconomic 
status (Buyantuyev and Wu, 2010; Hoffman et al., 2020). This is an area 
of interest for social scientists, resulting in constructs such as energy 
burden and energy insecurity (Hernández, 2016; Ito et al., 2018), as well 
as public health researchers, due to downstream influences on the health 
of vulnerable populations (Madrigano et al., 2015). We explored the 
association between social vulnerability and the temperature at 
midnight EDT on July 22, 2011, which has the hottest observed mean 
temperature at midnight (when most of the population would be home) 
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of all days in the study period. 
Our measure of social vulnerability was the Centers for Disease 

Control and Prevention’s social vulnerability index for 2010 (Flanagan 
et al., 2011, 2018). Each census tract has a vulnerability score, derived 
from 15 census indicators of social disadvantage, and computed as a 
quantile rank across the US. Scores range from 0 (least vulnerable) to 1 
(most vulnerable). We focus on the association of temperature and 
vulnerability within counties to avoid comparisons across vastly 
different physical and human geographies. For each of two kinds of 
temperature estimates (our XGBoost model vs. the NLDAS-2 estimate), 
we ran a mixed-effects linear-regression model where the dependent 
variable was predicted temperature and the predictors were a fixed 
intercept, a fixed slope of vulnerability score, and per-county random 
intercepts and random slopes of vulnerability score (with no assumption 
of correlation between the random intercepts and random slopes). The 
unit of analysis was the tract, and the dependent variable was a 
spatially-weighted average of predicted temperature of the intersecting 
grid cells. 

4. Results 

4.1. Model comparisons and selection 

We compared five different temperature models, each with a spatial 
resolution of 1 km and a temporal resolution of 1 h. Table 2 shows the 
accuracy of each model based on the RMSE, assessed with our spatial CV 
scheme, to predict temperature at the hot and cold hours in 2004 and 
2013. As expected, all models have larger weighted error than un-
weighted error, since unweighted error emphasizes performance in 
data-rich areas. Models also tended to perform better in 2013 than 2004, 
despite similar baseline variability (as seen in the SD of the original 
observations), perhaps because more observations are available in later 
years. 

Comparing the models to each other, we saw improvement with 
increasing complexity from IDW alone to OLS with many predictors, and 
likewise from OLS to the mixed model. The GAMM and XGBoost were 
best overall, and their RMSEs were little different from each other. 
However, the GAMM was much slower, taking 2 to 6 times as long to run 
as the equivalent XGBoost model. Given these results we used XGBoost 
for all subsequent analyses. 

4.2. Full cross-validation 

4.2.1. All years and hours 
Table 3 shows the performance of XGBoost for every year-hour, 

aggregated by year. In every year, and in both weighted and un-
weighted evaluation, the RMSE was much smaller than the SD of the 
original observations, indicating high accuracy. Overall, our predictions 
demonstrated an average error less than 2 K. Performance improved 
over time, likely due to a tenfold increase in the number of observations 
available; the weighted RMSE decreased from 1.8 K in 2003 to 1.4 K in 
2018. The mean of the yearly weighted RMSEs was 1.58 K R2 values 
were consistently around 0.98. 

Table 3 also shows the result of assessing NLDAS-2 predictions with 
the same observations as our model. We see that with or without 
weighting, in all years, the RMSEs are substantially higher than those of 
our model, failing to go below 2.3 K. The mean of the yearly weighted 
RMSEs was 2.46 K. Yearly weighted MSEs of NLDAS-2 were on average 
2.5 times that of XGBoost. We also tried including the NLDAS-2 air 
temperature as a predictor in our XGBoost model, but found no mean-
ingful improvement in RMSE, so we left it out to avoid the dependency 
(results not shown). 

4.2.2. Hottest and coldest days 
We also assessed performance during the hottest and coldest days of 

the study period, which may be particularly useful data for health 
studies of temperature extremes. Municipalities generally use tempera-
ture and humidity thresholds for heat-related action plans. For example, 
Washington, DC, has a threshold of 92 ◦F (33.3 ◦C; Homeland Security 
and Emergency Management Agency District of Columbia, 2020) for the 
air temperature or heat index. In our data, among the 2.3% of 
station-days (according to local time) in which an hourly temperature of 
at least 33.3 ◦C occurred, the mean yearly weighted SD was 5.55 K, 
while the mean weighted RMSE was 1.80 K for our model and 2.77 K for 
NLDAS-2 predictions. Among the 29% of station-days with an hourly 
temperature of at most 0 ◦C, the mean SD was 7.03 K and the mean 
RMSEs were 1.72 K for our model and 2.62 K for NLDAS-2 prediction. 
These results are largely consistent with the performance across all days. 

4.2.3. Example time series 
Fig. 3 is an example of how our hourly models capture within-day 

variation of temperature on a hot day. Shown are the observed tem-
perature and the CV-predicted temperature for each hour of July 22, 
2011, Eastern Daylight Time, at a MADIS station near Rochester, New 
York (longitude − 75.4145, latitude 43.1122). We chose this station for 
having the median per-station RMSE for that day, namely 1.25 K, among 
all 1148 stations with an observation for every hour on that day. 

4.2.4. Feature contributions 
Fig. 4 shows feature contributions as SHAPs for all hours in 2013. 

Fig. 4(a) shows the distribution of SHAPs and the corresponding feature 
values (linearly rescaled to have minimum 0 and maximum 1) for the ten 
features with the greatest mean absolute SHAP (excluding the IDW 
feature, which was by far the most important feature, with a mean ab-
solute SHAP of 8.65). Each vertical bar of each density plot is colored 
according to the mean of all feature values that have the corresponding 
range of SHAPs, while the height of the bar indicates the relative fre-
quency of that range. We see several relationships that are to be ex-
pected, such as lower elevations (Fig. 4(b)) and lower latitudes having 
higher SHAPs. Fig. 4(c) shows that impervious surfaces contribute to 
predictions more during nighttime than daytime, with greater imper-
viousness having more positive SHAPs. Similarly, nighttime LST values 
appear to be more informative than daytime LST values. Table S1 lists 
the mean absolute SHAPs for all 34 variables, and Figure S3 shows the 
relationship between SHAPs and values for every predictor. 

Table 2 
Comparison of spatially cross-validated predictive accuracies (RMSEs) of models for the hot and cold hours in 2004 and 2013, spatiotemporally unweighted (Unw.) 
and weighted (W.). SDs and RMSEs are in kelvins.   

2004, hot hour 2004, cold hour 2013, hot hour 2013, cold hour 

Observations 151,231 147,500 1,090,722 1,070,886 
Stations 782 767 4153 4127  

Unw. W. Unw. W. Unw. W. Unw. W. 
SD 10.85 11.24 9.93 10.30 10.74 11.25 9.45 9.85 
IDW only 1.78 2.15 1.67 2.03 1.57 2.01 1.50 1.94 
Linear regression 1.62 1.91 1.52 1.82 1.41 1.69 1.33 1.65 
Mixed model 1.57 1.82 1.48 1.75 1.34 1.59 1.28 1.56 
Generalized additive model 1.56 1.77 1.50 1.77 1.29 1.46 1.25 1.47 
XGBoost 1.56 1.80 1.46 1.71 1.29 1.48 1.23 1.46  
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4.3. New air temperature predictions 

4.3.1. Maps 
Fig. 5 is an example of new air temperature predictions, made with 

the XGBoost model trained on all of a year’s data. Fig. 5(a) depicts the 
entire study region at midnight EDT on July 22, 2011. Temperatures are 
clipped to [18 ◦C, 32 ◦C] for visibility; only 0.075% of the predictions 
fall outside this range. The coolest temperatures are in the northernmost 
part of the study area in Maine. Fig. 5(b) zooms in on Manhattan. An 
urban heat island is visible, particularly in the Bronx, Northern Man-
hattan, and parts of New Jersey. NLDAS-2 gridlines are shown in the 
zoomed-in map; our model predicts at a much finer resolution, capturing 
more spatial variability of temperature, which would have not been 
possible with NLDAS-2. Figure S4 and Figure S5 similarly show Boston 
and Washington, DC. 

4.3.2. External validation 
We predicted temperature at each of 14,257,658 observations closest 

to the hour at 2067 different Weather Underground stations in 2013. 
Aggregating across hours, the SD of the observations was 10.51 K un-
weighted and 10.73 K weighted, whereas the RMSE was 1.29 K un-
weighted and 1.39 K weighted. These results are similar to those 
obtained with our spatial CV with the 2013 MADIS data, supporting our 
stringent cross-validation strategy for model evaluation and providing 
evidence for the generalizability of our model. The results also support 
the quality of the Weather Underground data, so long as any data- 
quality problems in MADIS and Weather Underground are independent. 

4.3.3. Application to social vulnerability 
We used mixed models to characterize temperature at midnight EDT 

on July 22, 2011 as a function of social vulnerability in all 434 counties 
of the study area. When using our new temperature estimates, the fixed 
slope was 0.71 K (95% CI 0.60, 0.82) per unit difference in the social 
vulnerability index, compared to 0.18 K (95% CI 0.12, 0.25) when using 
NLDAS-2 temperatures. Thus, according to our XGBoost model, the most 
vulnerable census tracts were 0.71 K hotter at this time than the least 
vulnerable in a typical county. Fig. 6 shows the modeled associations for 
two counties in New York City and two in Upstate New York. The Up-
state counties were chosen because they are distant from New York City 
and cover urban, suburban, and rural landscapes. 

5. Discussion 

We created a 1-km hourly air temperature model covering the 
Northeast and Mid-Atlantic US from 2003 to 2019 with the XGBoost 
machine-learning algorithm and a large quality-controlled dataset from 
ground stations, satellite remote sensing, and physiographic covariates. 
Our model performed best in 2018, with an unweighted RMSE of 1.21 K 
and a weighted RMSE of 1.36 K. The results from our novel spatially- 
weighted evaluation method demonstrate that failing to account for 
the non-uniform spatial distribution of observations can lead to overly 
optimistic estimates of model performance. Model performance was still 
good when subsetting to the hottest or coldest days in the study period, 
which are important for studies of the effects of extreme temperatures on 
health, and typically harder to reconstruct. The model performed well in 
an external validation at thousands of Weather Underground stations, 

Table 3 
Cross-validation results (temperature SD and RMSE, in kelvins) from XGBoost models (along with the RMSE from NLDAS-2 for comparison) for all year-hours.   

Unweighted Weighted  

Observations Stations R2 SD RMSE (XGBoost) RMSE (NLDAS-2) SD RMSE (XGBoost) RMSE (NLDAS-2) 

2003 2,429,994 575 0.979 11.00 1.59 2.47 11.13 1.82 2.50 
2004 3,599,525 796 0.980 10.75 1.50 2.42 11.11 1.74 2.46 
2005 4,583,722 1003 0.981 11.05 1.53 2.45 11.31 1.81 2.52 
2006 6,324,191 1267 0.975 9.64 1.52 2.42 9.99 1.76 2.49 
2007 4,350,445 905 0.979 11.08 1.60 2.54 11.37 1.80 2.57 
2008 6,942,368 1382 0.982 10.29 1.38 2.34 10.61 1.65 2.43 
2009 10,616,378 1820 0.983 10.27 1.33 2.34 10.74 1.58 2.45 
2010 12,373,631 2123 0.985 10.90 1.33 2.34 11.15 1.54 2.40 
2011 13,508,410 2314 0.984 10.51 1.32 2.38 10.82 1.56 2.45 
2012 22,167,011 4039 0.983 9.74 1.28 2.32 10.38 1.51 2.43 
2013 25,994,855 4195 0.986 10.43 1.25 2.34 10.87 1.46 2.42 
2014 25,225,773 4131 0.986 10.64 1.26 2.45 11.40 1.45 2.52 
2015 26,962,107 4076 0.987 11.22 1.29 2.38 11.60 1.49 2.45 
2016 28,198,019 4092 0.985 10.53 1.28 2.40 10.97 1.47 2.47 
2017 28,086,992 4048 0.986 10.39 1.24 2.36 10.74 1.40 2.42 
2018 26,025,033 3936 0.988 11.04 1.21 2.34 11.35 1.36 2.40 
2019 23,641,305 3932 0.987 10.88 1.25 2.32 11.11 1.41 2.39  

Fig. 3. Predicted and observed temperature for July 22, 2011 near Rochester, New York. Note that this station, like many others in MADIS, reports observed 
temperature in integer degrees Fahrenheit. 
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providing further evidence for the generalizability of the model. We also 
used SHAP to show how various predictors contributed to the pre-
dictions, with IDW-interpolated temperature from other stations (care-
fully constructed to avoid leakage of testing data into model training) 
providing the largest SHAPs, followed by the elevation, time of year, and 
latitude. Finally, the example model application shows that midnight air 
temperature is positively associated with social vulnerability within 
counties during an extreme-heat event, demonstrating our model’s po-
tential for social science and human-health studies. 

Several air-temperature models have been developed or used for 
health studies, including NLDAS-2 (Rowland et al., 2020; Wortzel et al., 
2019; Wu et al., 2018). We found that our model’s predictions were 
considerably more accurate than those of NLDAS-2. While NLDAS-2 is 
also hourly, its spatial resolution is coarse, so it misses substantial spatial 
heterogeneity, as shown in Fig. 5(b). If coarser resolution masks the 
association of higher temperatures with vulnerability, it may limit the 
utility of those models in public health planning and policymaking. And 
in fact, we found that NLDAS-2 was markedly less associated with social 

vulnerability within counties than our model was. Therefore, our model 
seems to reconstruct temperature heterogeneity associated with social 
deprivation and vulnerability, as seen in other studies (Buyantuyev and 
Wu, 2010; Hoffman et al., 2020). Accurate reconstruction of tempera-
ture profiles for vulnerable populations has important implications for 
energy insecurity (Hernández, 2013), heat action plans, and urban 
planning. By comparison, the Kloog et al. models operate at a finer 1-km 
spatial resolution like our model, but their temporal resolution is a daily 
average (Kloog et al., 2014, 2017). Consequently, they cannot capture 
within-day variation that may be important for certain acute health 
outcomes. 

The high temporal and spatial resolutions of our model are among its 
many strengths. Our model balances accuracy and computational effi-
ciency: XGBoost outperformed linear models including a random slopes 
approach used previously for daily temperature models (Kloog et al., 
2014) and flexible penalized spatiotemporal smoothers. We took 
particular care to avoid leakage of test data (such as in our construction 
of IDW surfaces) and overfitting (with a spatial CV scheme). Ensemble 

Fig. 4. Relationships between the SHAPs and the values of predictors for all hours in 2013. In our SHAP summary plot (a), predictors are sorted by mean absolute 
SHAP, with the greatest on top (except IDW, with a mean absolute SHAP of 8.65). The height of the bar indicates the relative frequency of that range and color 
indicates the feature value. In SHAP dependence plots for (b) elevation and (c) imperviousness, only 10,000 randomly selected predictions are plotted. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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methods offer a way to combine the outputs of different prediction 
models to improve predictive performance, but ensemble modeling for 
spatiotemporal data requires yet more complexity to avoid leakage. We 
employed a spatial CV scheme with weighted model evaluation that, to 
our knowledge, is novel for air-temperature models. The spatial CV is 
particularly important to ensure that no prior information from sites and 
nearby exclusion zones is used in model training. This approach is 
relevant for health studies, since we aim to predict temperatures at times 
and places for which we do not have data, such as unmonitored resi-
dential addresses. When we compared unweighted and weighted results, 
we found that weighted RMSEs were consistently higher. This implies 
that the standard unweighted approach yields overly optimistic per-
formance metrics for out-of-sample predictions due to the assumption 
that all observations are equally informative for assessment. 

Nonetheless, our RMSEs are quite small overall with an unweighted 
mean square error (MSE) from our XGBoost predictions that is 1/3 of the 
MSE of NLDAS-2 temperatures, averaging across all years. Our hourly 
1-km model may be particularly useful in cities because the spatial and 
temporal resolution can capture the heterogeneity of the urban heat 
archipelago. We found that the contribution of imperviousness to our 
model’s predictions is greatest at night, the period when other studies 
have found the urban heat island effect is most pronounced (Oyler et al., 
2016). The high spatial resolution of our model makes it ideal for risk 
assessment applications, including assessment of exposure disparities, 
and in environmental health studies. Finally, the model’s annual con-
struction makes it easy to update for new years: models for previous 
years do not have to be refit. 

A limitation of annual fitting is that our model cannot learn patterns 

Fig. 5. Maps of 1-km temperature predictions at midnight EDT on July 22, 2011. Water bodies are masked out from the images. Grid cells appear nonrectangular 
because they have been reprojected from the MODIS sinusoidal projection to plate carrée. (a) Showing the entire study region of 750,808 cells. (b) Panned to 
Manhattan and enlarged. Overlaid gridlines show NLDAS-2 cells that are roughly 11 × 14 km in extent. 

Fig. 6. Predicted temperature per census tract versus social vulnerability index in four counties. Each point represents a census tract and its temperature at midnight 
EDT on July 22, 2011 based on NLDAS-2 or our XGBoost model. 
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across years. We utilize LST from four daily overpasses from the two 
MODIS instruments but are limited by data availability to the period 
from 2003 onward. Therefore, our model is not ideal for long-term 
trends. Another limitation is that our model uses area-level predictors 
to make predictions at point locations, the MADIS weather stations. This 
design assumes that the station is representative of the mean tempera-
ture of the 1-km grid cells, which may contribute to our modest pre-
diction error. Additionally, our model measures temperature alone, and 
many health studies are interested in assessing the role of apparent 
temperature in adverse health outcomes. We are extending the methods 
of this approach and adding satellite-based retrievals of column water 
vapor to construct ambient humidity-prediction models for future health 
applications (Just et al., 2020a, 2020b). Lastly, our analysis of social 
vulnerability was only conducted for the temperature at a single hour of 
a single heat wave. It was only intended for expository purposes. Future 
analyses should consider longer-term relationships with social vulner-
ability and health. 

6. Conclusion 

We compared five approaches to create an extensible, flexible, and 
accurate air temperature model. Ultimately, we used the XGBoost al-
gorithm to create hourly 1-km predictions across the Northeast and Mid- 
Atlantic US from 2003 to 2019. These predictions can play a pivotal role 
in future applications to social science and human health. 
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