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The COVID-19 pandemic has yielded disproportionate impacts on communities of color in

New York City (NYC). Researchers have noted that social disadvantage may result in limited

capacity to socially distance, and consequent disparities. We investigate the association

between neighborhood social disadvantage and the ability to socially distance, infections, and

mortality in Spring 2020. We combine Census Bureau and NYC open data with SARS-CoV-2

testing data using supervised dimensionality-reduction with Bayesian Weighted Quantile

Sums regression. The result is a ZIP code-level index with weighted social factors associated

with infection risk. We find a positive association between neighborhood social disadvantage

and infections, adjusting for the number of tests administered. Neighborhood disadvantage is

also associated with a proxy of the capacity to socially isolate, NYC subway usage data.

Finally, our index is associated with COVID-19-related mortality.
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The 2019 novel coronavirus (SARS-CoV-2) was first detec-
ted in Wuhan, China, and has since become a worldwide
pandemic. In the United States, given the nature of this

novel infectious disease, anyone exposed to the pathogen was
believed susceptible to infection. By the Spring of 2020, there were
no proven pharmacologic treatments, and limited testing capacity
contributed to a poor understanding of viral transmission. Pre-
existing conditions are known risk factors of disease severity, and
mortality increases sharply with age1. Consequently, the United
States federal, state and local governments have principally relied
on non-pharmaceutical interventions such as social distancing
and mask-wearing. New York State (NYS) on PAUSE is one such
effort, whereby essential workers, i.e., healthcare workers, food
purveyors, bank tellers, etc., were the only employees that should
be reporting to work. We examine the association between social
factors, such as employment and commuting patterns, population
density, food access, socioeconomic status and access to health-
care, and area-level infection rates.

It has been widely noted in popular media and emerging sci-
entific evidence that COVID-19 is taking a disproportionate toll
on communities of color2–5. For example, in Chicago, as the
outbreak first unfolded, Black people comprised 70% of early
COVID-related deaths, but only 30% of the population5. In New
York City (NYC), Hispanics and LatinX people, and Black people
were disproportionately impacted, with mortality rates of 264 and
249 per 100,000 respectively, compared to 124 for white people5.
While differences in disease severity are likely attributed to higher
levels of preexisting conditions, i.e., health disparities6, this does
not explain differences in disease incidence. A survey of
laboratory-confirmed hospitalized cases across 14 states in March
2020 found that where race or ethnicity was reported, that 33.1%
of hospitalized patients were non-Hispanic Black people7. In
NYC, as of 13 May 2020, the cumulative incidence of non-
hospitalized positive cases were 798.2, 684.8, and 616.0 per
100,000 for Black/African American, Hispanic and LatinX, and
white people respectively8.

A body of literature on the social determinants of health sug-
gests that there are numerous inequities that provide the scaf-
folding for increased COVID-19 infection rates in communities
of color. Racism operates on both the interpersonal and structural
levels, the latter explaining the societal mechanisms that reinforce
inequality, including through housing, employment, earnings,
benefits, health care, criminal justice, etc.9. Those structural forms
of social disadvantage are responsible for many of the health
disparities we observe in communities of color10.

Researchers have outlined the ways in which residential
segregation and structural disadvantages lay the groundwork
for racial disparities in infectious diseases11. More recently,
others have noted that social distancing is more difficult for
communities of color5. Taken together, this literature highlights
the social mechanisms that may facilitate viral spread in com-
munities of color. The underlying structural disadvantages
relevant to the current coronavirus pandemic might include
that people of color (POC) are more represented amongst low-
wage jobs12, many of which are now deemed essential13. When
they get home from work, they are more likely to return to
densely populated homes and neighborhoods14. Further, due to
structural or cultural factors, multigenerational homes are more
common in communities of color15, which makes social dis-
tancing between least susceptible (healthy children) and most
susceptible (older adults with chronic conditions) difficult. POC
often live further from supermarkets and sources of nutritious
foods, necessitating further travel for groceries16. These factors,
among others, underscore the many ways that the capacity to
social distance may be contextual and based on structural
factors.

In this population-level study, we use socioeconomic data on
neighborhood characteristics to understand differences in infec-
tion incidence between neighborhoods, as we quantify the relative
contribution of these measures of social disadvantage and if a
proxy of social isolation, NYC subway utilization, helps us to
understand these differences. We create a ZIP code level COVID-
19 inequity index for NYC, a composite measure of
neighborhood-level disadvantage trained on infection rates, and
show how this index explains racial/ethnic disparities in cases,
thus reflecting structural forms of disadvantage. Finally, we
examine the relationship between the inequity index and
neighborhood-level COVID-19 mortality. Ultimately, we create a
tool that identifies social factors that are associated with viral
spread, and therefore, may be useful throughout the US to pin-
point potential areas for targeted public health intervention. The
inequity index was designed to understand the relationship
between social inequality and neighborhood infection rates dur-
ing the first wave of the COVID-19 pandemic in New York City.
All results are associational and based on population-level, rather
than individual-level, data. It is a retrospective tool, and, in its
current form, may be used in scientific research for studies with
contemporaneous and co-located data. The inequity index can-
not, and was not intended to, predict dynamic infection rates or
spatial clusters. We caution users of the index to avoid applica-
tions that stigmatize neighborhoods or their residents.

Results
Cross-sectional COVID-19 inequity index. We wanted to
identify an association between a neighborhood social dis-
advantage composite index and cumulative COVID-19 viral
swab-confirmed infection incidence. There were 174,614 positive
tests across 177 NYC modified ZIP Code Tabulation Areas
(ZCTAs) as of May 7, 2020. Kendall’s tau correlations between
social disadvantage variables ranged from −0.15 to 0.61 (Sup-
plementary Fig. 1). Kendall’s tau correlation tests were also
conducted between each variable and the infection incidence
(Supplementary Table 1). Our a priori hypothesis was that
increased disadvantage is associated with higher infections, so we
transformed variables that had univariate negative associations
with the outcome to aid in interpretation. Median income was
transformed using its reciprocal, and for proportion-based vari-
ables, we used 1—the value.

The BWQS regression analysis identified evidence of an
association between our composite variable of ZCTA-level
neighborhood social disadvantage (on a ten-unit scale) and the
number of infections per 100,000 (Fig. 1) when adjusted for a
smooth function of ZCTA-level testing (Supplementary Fig. 2).
We found that each unit increase in disadvantage is associated
with an 8% increase in infections per capita (risk ratio: 1.08; 95%
credible interval: 1.06, 1.09), and the BWQS regression had an
overall Bayesian R2 of 0.93 (95% credible interval: 0.92, 0.95)17

with no significant difference of the observed residuals from the
expected distribution (Supplementary Fig. 3). All ten included
variables contributed to the composite COVID-19 inequity index,
but they did not all contribute equally (Fig. 2 and Supplementary
Table 2). We interpreted the point estimates of the weight
assigned to the social variables, noting that the credible intervals
of the variable weights overlap with one another. We found that
the proportion of uninsured people in a ZCTA is the single largest
contributor to the impact of social disadvantage on infections,
followed by the average number of people in a household and the
proportion of the population who are essential workers using
personal vehicles to commute. The proportion of uninsured
people and the average household size had the highest weights in
39 and 25% of model iterations respectively (Supplementary
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Table 3). The population density and the median income are also
relatively informative compared to the other variables. Since the
BWQS has never been applied to social or infectious disease
epidemiology, we compared it to two other approaches: (1) a
model with only the proportion of essential workers and the
median income, and (2) a principal component regression of all
ten social variables. The BWQS yielded a smaller root mean
squared error and a higher Kendall’s tau rank correlation of
ZCTAs expected versus observed infections per capita, though the
BWQS is a more complex approach (Supplementary Table 4). We
also assessed the sensitivity of our results to the selection of
alternative priors for our overdispersion parameter and found
negligible differences in the coefficients and widely applicable
information criterions (WAICs) using half-Cauchy or inverse
gamma distributions.

ZCTAs are often not ideal for health-based research, as they
may combine heterogeneous neighborhoods with large variation
in social phenomena18. Infection and mortality data is only
publicly available at the ZCTA level, but it is possible that sub-
ZCTA geographies more adequately capture the relationship
between social disadvantage and infection rates. Given that the
mean of each social variable across the entire ZCTA may mask
underlying disparities and the social conditions of the more
disadvantaged neighborhoods, we repeated our analyses after
estimating the median and third quartile of the social variables
under study for each ZCTA population using the American
community survey (ACS) data from underlying census tracts
(n= 2167 within NYC). Results showed consistency in the effect
estimates and small but notable improvements in the WAIC,
Bayesian R2, and RMSE (Supplementary Table 5). We proceeded
with the ZCTA-level analysis for ease of interpretation, using
ZCTA-level data for the exposure and outcome data.

The spatial distribution of the COVID-19 inequity index
largely mirrors that of infections in NYC (Fig. 3). We examined
the population demographics of neighborhoods according to their
COVID-19 inequity index (Fig. 4). The data shows that Black
people have the highest population-weighted mean index and
white people have the lowest. Examining these distributions by
quantile of the COVID-19 inequity index shows that white
populations are overrepresented in ZCTAs in the lower quartile
of the COVID-19 inequity index (<25th percentile) and under-
represented in the upper quartile of inequity index (>75th
percentile) ZCTAs (Supplementary Fig. 4). While white people
comprise approximately 32% of NYC’s population, they only
make up 10% of high inequity index ZCTAs. Conversely, Black
people and Hispanic, LatinX people are 22 and 29% of NYC’s
population and 30 and 43% of high index areas respectively.

Capacity to social distance. We used area-level subway ridership
as a proxy for the capacity to socially distance, and to examine
differences in ridership by our COVID-19 inequity index, thus
representing a possible mechanism between neighborhood dis-
advantage and infections. Given that neighborhood disadvantage
is spatially heterogeneous, associated ridership differences may
indicate places where individuals were less able to socially dis-
tance themselves due to being an essential worker, not having
access to a car, etc. We found that capacity to social distance
appears lower in higher COVID-19 inequity index areas, as
indicated by the most important variables in our BWQS regres-
sion analysis. To assess whether or not this was true using
longitudinal data, we decided to model differences in subway
utilization by united hospital fund areas (UHFs) in NYC. We only
included the 36 UHFs with the most consistent data quality and
that had subways present (Supplementary Fig. 5). In order to

Fig. 2 Estimated contribution of social variables to the COVID-19
inequity index, with 95% credible intervals. The unit of analysis is
ZCTA (n= 177). The BWQS weights the explanatory variables by their
relative contribution to the composite index, between 0 and 1. The
mean weights sum to 1 and are organized into conceptual domains and
ordered by mean weight. Points represent the mean weights and lines
represent 95% credible intervals. Source data are provided as a Source
Data file.

Fig. 1 Scatterplot of COVID-19 inequity index and cumulative infection
incidence. The unit of analysis is ZCTA (n= 177). The fitted line and
gray ribbon represent the BWQS negative binomial regression line and
its 95% credible interval, holding the testing ratio constant at the median.
Marginal histograms represent the distribution of the variable on each
axis. Source data are provided as a Source Data file.
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Fig. 3 COVID-19 inequity index map of NYC in relation to infections and mortality. The unit of analysis is ZCTA (n= 177). a Shows the constructed
COVID-19 inequity index based on weighted social determinants trained on (b) reported cases of SARS-Cov-2 infections as of May 7, 2020. c Shows the
ZCTA-level mortality per 100,000 as of May 23, 2020. Base map and data from OpenStreetMap and OpenStreetMap Foundation. Source data are
provided as a Source Data file.
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identify the proper functional form of our nonlinear model, we fit
it on the mean sigmoidal decay of subway utilization across all of
NYC (Supplementary Fig. 6). We then compared this model to
two models, split by UHF-level population-weighted COVID-19
inequity index (Fig. 5). A partial F-test demonstrated that the
models split by COVID-19 inequity index categories (above
versus below the median) were a significantly better fit than one
combined model (p < 0.0001).

The separate models indicate that there is little difference
between slopes for the high (−5.6% per day; 95% CI: −6.0,
−5.3%) versus low (−6.2% per day; 95% CI: −6.5, −5.8%)
COVID-19 inequity index areas (Table 1). However, the lower
asymptote of subway utilization under social distancing policies is
higher for high inequity index (16%; 95% CI: 15.3, 16.7%) areas

compared to low-risk inequity index areas (9.5%; 95% CI: 8.9,
10.1%). This implies that high risk and low index areas had
similar relative rates of decreased subway utilization upon news of
the pandemic, e.g., school closures, etc. However, high COVID-19
inequity index neighborhoods had higher relative use of the
subway system after official social distancing policies (NYS on
PAUSE) went into effect. These trends were consistent when we
modeled 3 risk groups at the UHF (Supplementary Fig. 7) and
ZCTA levels (Supplementary Fig. 8). Overall subway utilization
followed similar trends to other measures of transportation,
including Google’s transit data (see Supplementary Fig. 9).

Mortality related to the COVID-19 inequity index. There were
16,289 COVID-related deaths across 177 ZCTAs by May 23,
2020. NYC DOHMH surveillance data show that race/ethnic
disparities are greater for COVID-19 mortality than for SARS-
Cov-2 infections. Therefore, we wanted to assess whether our
index that captures neighborhood disadvantage in relation to
infection was also related to ZCTA-level mortality. Results from
the negative binomial model show a strong association between
the ZCTA COVID-19 inequity index and cumulative COVID
mortality incidence (Table 2). This regression model employed a
spatial filtering approach to account for potential spatial auto-
correlation at the ZCTA level. We found that each unit increase
in the COVID-19 inequity index is associated with a 20%
increased risk of COVID-related mortality (relative risk: 1.2; 95%
CI: 1.16, 1.23) when accounting for spatial dependence. Spatial
autocorrelation of residuals was small in magnitude (Moran’s I:
0.05) and non-significant (p value: 0.08). See Supplementary Fig.
10 for a map of the residuals.

Discussion
We conducted an ecological study using publicly available data to
identify associations between neighborhood social disadvantage
on cumulative COVID-19 infections and COVID-19-related
mortality in NYC over 9 weeks after the first COVID-19 case
was identified in spring 2020. The COVID-19 inequity index was

Fig. 4 Distribution of COVID-19 inequity index by race/ethnicity of ZCTA
residents. The COVID-19 inequity index varied by race/ethnic categories
according to the 2018 ACS. Density plots are population-weighted to
demonstrate the relative abundance of representation according to ZCTAs
and their corresponding COVID-19 inequity index and ordered by the
population-weighted mean index. Source data are provided as a Source
Data file.

Fig. 5 Subway ridership trends by population-weighted COVID-19 inequity index at the united hospital fund neighborhood level. The nonlinear model
was fitted using a generalized Weibull equation with two curves: high (above median) and low (below median) COVID-19 inequity index at the UHF
neighborhood level (n= 36). Daily subway ridership is relative to 2015–2019. The dashed line represents the start of NYS on PAUSE social distancing
policies. Ridership is shown between 16 February 2020 and 30 April 2020. Source data are provided as a Source Data file.
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also used to understand differences in social distancing, as mea-
sured by subway ridership. In creating our COVID-19 inequity
index, we found that a combination of social variables, indicative
of social disadvantage, is associated with cumulative infections
and mortality. Black communities and Hispanic, LatinX com-
munities are overrepresented in high COVID-19 inequity index
neighborhoods, and white people are overrepresented in low
COVID-19 inequity index neighborhoods, which may represent
structural forms of racism. When examining differences in the
capacity to socially isolate, we found that high index neighbor-
hoods had higher subway ridership during NYS-mandated social
distancing. Finally, our COVID-19 inequity index is also asso-
ciated with cumulative COVID-19 mortality at the ZCTA level.
This implies that the same social factors that inform increased
disease risk are also associated with severe outcomes, either
directly or through intermediates.

A growing body of literature is examining the greater impact of
COVID-19 based on measures of neighborhood structural dis-
advantage. As some have noted, COVID-19 is not creating new
health disparities, but exacerbating those that already exist2. A
recent investigation found that county and ZCTA area-based
socioeconomic measures, specifically using crowding, percent
POC, and a measure of racialized economic segregation, were
useful in identifying higher COVID-19 infections and mortality
in Illinois and New York19. Work on COVID-19 mortality in
Massachusetts has found excess death rates for areas of higher
poverty, crowding, proportion POC, and racialized economic
segregation19. There has been some concern that neighborhood
disadvantage and case positivity associations could be confounded
by access to testing, with advantaged communities having more
access than lower20; however, Schmitt-Grohe et al. found no
evidence of testing inequalities by income, and a small negative
association when also including the proportion of Black people21.
An analysis examining spatial patterns of infections found that
ZCTAs with high proportions of Black residents and residents
with chronic obstructive pulmonary diseases (COPD) were the
most likely to experience the highest COVID-19 infection rates22.
We know of three other studies that have tied neighborhood-level
disadvantage to mobility (via cellphone data)20 and subway
utilization23, and mobility data with COVID-19 infections20,23,24.
Researchers have begun to identify counties that are particularly
susceptible to severe COVID-19 outcomes using a combination of
biological, demographic, and socioeconomic variables19. They
identified counties with high population density, low rates of

health insurance, and high poverty as particularly at risk. How-
ever, a stated limitation of this work is that many of these variables
are interrelated.

Our study has many strengths. First, we acknowledge and
address the strong interrelation of social variables by using a data-
driven method for modeling mixtures of exposures: BWQS, while
flexibly adjusting for the intensity of testing. By using this
method, we create a composite index that captures the combined
effect of the constituent variables after a quantile transformation
that makes our model more robust to extreme values. This pro-
cess is also supervised, meaning that the variables are not
weighted equally in the composite index, but instead, the
approach empirically learns their individual contributions to
explaining the outcome. The appeal of an index is both sum-
mative and contextual. The composite index can be used to direct
outreach and testing (such as mobile testing units) regardless of
the components most driving the index value in each geographic
unit. Also, index weights can be used to inform the types of
interventions targeted to specific neighborhoods. In NYC,
COVID-19 positive residents could stay in hotels for two weeks
until they were no longer contagious, but it is unclear if this was a
targeted intervention. Our index helps contextualize the unique
combination of social conditions per ZCTA that relate to ZCTA-
level infections for targeting interventions (e.g., in ZCTAs with
the higher average number of people per household, then rapid
testing could be paired with outreach for hotel isolation). The
second strength of our study is that our approach largely relies on
ACS data, which is available across the USA, and may allow for
the identification of other communities nationwide that are
particularly vulnerable to future outbreaks or even other novel
respiratory pathogens. Third, we explicitly excluded race and
ethnicity from the creation of the index because we were more
interested in identifying social processes associated with infection
rates, rather than those that may imply biological or behavioral
explanations to health disparities25. The theory underlying these
relationships is that structural racism increases the proportion of
POC in areas of high disadvantage, and those structural forms of
disadvantage facilitate pathogen spread. To demonstrate this, we
employed the index to understand neighborhood differences in
the capacity to social distance. This finding provides additional
evidence that low-income communities and communities of color
may be less able to socially distance5. Fourth, our spatial analysis
of COVID-19-mortality shows that the COVID-19 inequity index
may not only be useful in identifying infection risk, but also a risk
of severe outcomes. Finally, our data sources and analysis code
are publicly available, which we believe is one of few among
comparable COVID-19 disparities analyses24. This means that
others can (1) reproduce these analyses, (2) expand on the work
by assessing different modeling strategies, and (3) assess the
utility in other parts of the country.

This study also has notable limitations. First, we were unable to
identify a measure of multigenerational housing at the ZCTA
level, which may represent a pathway for infection, and poten-
tially severe disease. Second, by not including race in our models,

Table 1 Coefficients from nonlinear regression of COVID-19 inequity index and subway ridership.

High inequity index Low inequity index

Coefficient 95% CI Coefficient 95% CI P value

Lower asymptote 16% 15.3, 16.7% 9.5% 8.9, 10.1% 2.00 × 10−16

Slope −5.7% per day −6.0, −5.3% −6.2% per day −6.5, −5.8% 4.50 × 10−1

Lower asymptote and slope are parameters from a nonlinear model with a generalized Weibull equation and two curves for high (above median) and low (below median) COVID-19 inequity index at the
UHF neighborhood level. Two-tailed tests, no adjustments for multiple comparisons.

Table 2 Results from a negative binomial regression of
COVID-19 inequity index and COVID-19 cumulative
mortality proportion at the ZCTA level.

Term Relative risk (95% CI) P value

COVID-19 inequity index 1.2 (1.16, 1.23) 2.00 × 10−16

Eigenvector of spatial element 0.41 (0.19, 0.86) 2.00 × 10−16
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we may be missing an opportunity to tune these models to the
impacts of interpersonal and structural forms of racism26. Third,
infection data are based on viral swab-confirmed cases, and early
testing protocols in NYC were largely limited to hospitalized
individuals, therefore those with more severe disease8. Conse-
quently, ZCTA infection data may be confounded by the dis-
tribution of factors that drive disease severity. We addressed this
by adjusting our BWQS regression for the amount of overall
testing per ZCTA. Relatedly, for our spatial analysis of COVID-
mortality, we were unable to access a ZCTA-level measure of
chronic diseases. Since communities of color have higher rates of
chronic disease at younger ages27, and chronic diseases increase
the likelihood of severe COVID-19 outcomes, this is an important
challenge. However, because social disparities are a major con-
tributor to differences in the chronic conditions that increase the
likelihood of severe disease, we did not want to adjust for an effect
modifier. Instead, we adjust for spatial autocorrelation to account
for residual risk factors that are more similar in nearby neigh-
borhoods. Fourth, we use pre-pandemic social variables derived
from the 2018 ACS and thus do not directly account for variation
in residential mobility during NYS on PAUSE, i.e., those who fled
to their second homes28. However, this should be captured, in
part, by median income and other measures of affluence in our
COVID-19 inequity index. Fifth, our analysis of public transit
only utilized data from subway turnstiles, but not bus ridership.
Although buses are an important form of transit in NYC, espe-
cially in the outer parts of the boroughs, the MTA does not
provide time-varying ridership data. Further, buses were made
free during the pandemic, so accurate ridership data are likely
unavailable to the NYC government as well29. Sixth, the BWQS
method has never been applied to social/infectious disease epi-
demiology, although it has been successfully used in environ-
mental epidemiology, which has similar issues of correlated
multi-dimensional exposures30,31. Seventh, this study uses
ZCTAs as our administrative unit of analysis. There is likely
greater demographic heterogeneity in some ZCTAs compared to
others, and few health-related decisions are made on this level.
However, the NYC and NYS DOH has only released data at this
scale, thus limiting our ability to examine relationships at varying
spatial scales. We assessed the sensitivity of our results to using
tract-level data to estimate our ZCTA-level exposure metrics and
found consistent results. Finally, an unfortunate potential con-
sequence of creating a COVID-19 inequity index is the possibility
of stigmatization of neighborhoods with high index values25. This
is not our intention, and hopefully not the effect, as our goal is to
identify social factors associated with viral spread and demon-
strate that uniform mandates on social distancing to avoid
exposure are not equally observable by all populations within
NYC.

Our work focused on the social conditions that are associated
with uneven exposure to SARS-CoV-2, and higher infections, for
disadvantaged communities in the spring of 2020. Since then, this
situation has been compounded by national interventions that do
not appear to be yielding equitable outcomes. For example, the
federal Paycheck Protection Program is largely not accessible to
minority-owned businesses32 and bias has been found in the
disbursement of Coronavirus aid, relief, and economic security
act funding, with hospitals in predominantly Black communities
receiving fewer dollars on average33. These examples underscore
an important reality; addressing health inequities requires explicit
identification of disparities, their derivation, and creating inter-
ventions designed for equitable outcomes. This is essentially the
strategy behind the National Academies of Sciences, Engineering,
and Medicine’s Consensus Report on the allocation of COVID-19
vaccinations, which proposes targeted distribution based on

measures of social vulnerability34. Consequently, we believe that
tailored health and social equity initiatives represent an important
path forward for COVID-19 pandemic response and planning.

In this study, we created a neighborhood measure of social
disadvantage that is specifically tuned to the impacts of COVID-
19 infections and mortality in NYC and we show that this
measure is associated with the capacity to socially distance, which
may represent an important pathway for COVID-related health
disparities. This is an important area of investigation given the
large toll that COVID-19 has had, and will likely continue to have
unless action is taken, on disadvantaged communities of color in
NYC and elsewhere. Future work should assess the general-
izability of these results in other parts of the country, new waves
of the pandemic, or if our approach can be adapted to different
contexts, potentially yielding regionally tuned sets of social vari-
ables that are associated with increased COVID-19 inequities.

Methods
Data sources and cleaning. SARS-CoV-2 testing and COVID-19 mortality data.
The NYC Department of Health and Mental Hygiene (NYC DOHMH) has been
publicly releasing daily testing data (positive and total tests) at the patient’s home
ZIP Code Tabulation Area (ZCTA) level since April 1, 2020, and COVID-19
related mortality data since mid-May, both available on GitHub35. The NYC
DOHMH utilizes modified ZCTA geographies, designed to still be mergeable to the
Census Bureau ZCTA designations. Our analyses relied on pre-pandemic demo-
graphic data to describe variation in neighborhood-level disease burden after much
of the community had the potential for exposure. Since spatiotemporal infection
patterns were highly variable at the beginning of the pandemic in relation to many
independent viral introductions within NYC36, we estimated cumulative infections
on 7 May 2020, 4 weeks after NYC’s peak infection period. We estimated the time
from symptom onset to death as 16 days35. Therefore we chose 23 May 2020, for
our cumulative COVID-19 mortality analysis. This analysis is not human subjects
research as it did not include any intervention or interaction with individuals or
any identifiable private information.

Census data. We downloaded the Census Bureau’s 2018 ACS data via the
tidycensus R package36. Data were collected for the 214 ZCTAs in NYC and
summarized to the 177 modified ZCTAs that NYC DOHMH reported. Variables
included: the total population, number of households, median income, median
rent, health insurance status, unemployment, individuals at or below 150% of the
federal poverty level, race and ethnicity, industry of employment, and mode of
transportation to work. A full list of variables is provided in Supplementary
Table 6. We created a proxy for the proportion of individuals in essential worker
positions using industry of employment variables. This estimate of essential
workers was a sum of those who reported employment in the agricultural,
construction, wholesale trade, transportation and utilities, and education/
healthcare industries, divided by the total working-age population. To account for
teachers mostly working from home, and healthcare workers being essential, we
included only half of the education/healthcare industry respondents. From these
data, we also estimated the average housing burden by dividing the average rent by
median income and the household size by dividing the total population by the
number of households. We utilize race and ethnicity according to the following
categories: Non-Hispanic Asian, Non-Hispanic Black, Non-Hispanic white,
Hispanic/Latino of any race, and aggregate all other races into Other people.

Residential buildings and food access data. We calculated the volume of
residential space by merging the NYC building footprints dataset and the primary
land use tax lot output dataset. We divided residential volume by total population
to calculate mean residents per residential volume, a metric of residential
population density. Food access was used as a measure for the likelihood that
individuals need to leave their neighborhoods for basic necessities. We estimated
food access using data from New York State’s Open Data portal for retail food
stores. Businesses were restricted to J, A, and C establishment code designations in
order to identify those most likely to provide fresh foods and produce, and then
manually removed any business names that indicated being a corner store or
pharmacy, or primarily selling alcohol/tobacco. The remaining stores had 1034
unique addresses, and we were able to geocode 997 of these to point locations. We
spatially joined the point locations to our ZCTA shapefile and divided them by the
total Census population to calculate a “grocers per 1000 people” variable as a proxy
for food access.

Mobility and transit data. The metropolitan transit authority (MTA) of NYC
releases subway utilization data on a weekly basis. These data include the number
of entrances and exits per station. For each day and geographic area, we summed
all system entrances and exits. To account for typical usage of the subway each
month and day of the week, we divided the total turnstile count for each day and
area by the median daily count on the same day of the week within the same month
throughout the period 2015–2019.
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Quantitative analyses. Cross-sectional COVID-19 inequity Index. Socioeconomic
variables are known to be closely correlated with one another, which is a challenge
to model fitting and interpretation of the underlying latent relationship.
Researchers have often addressed the multicollinearity of social determinants with
the use of dimensionality reduction techniques such as principal components
analysis (PCA) in the case of the neighborhood deprivation index37. However,
traditional PCA only considers correlations between SES variables, whereas a
supervised method captures features most relevant for the outcome. To address
these shortcomings, we developed a weighted combination of socioeconomic
variables to explain the cumulative number of COVID-19 cases per ZCTA using
Bayesian weighted quantile sums regression (BWQS)30 (see Supplementary
Methods for model notation and description). Candidate demographic variables
for the COVID-19 inequity index from the ACS included average household size,
income, rent, households using supplemental nutrition assistance program (SNAP)
benefits, poverty, health insurance, unemployment, and industries of employment.
Derived variables from ACS data included average rent burden and household size.
Non-ACS variables included the population density (persons per square foot of the
ZCTA) and residential population density (persons per cubic foot of ZCTA resi-
dential volume). Our choice of variables is largely influenced by the theoretical
framework from Acevedo-Garcia11 and our understanding of the employment
sectors deemed essential workers, and therefore less able to stay home during a
time of social distancing. Our measures of population density attempt to capture
(in)ability to physically distance within the home and otherwise dense housing
conditions such as apartment buildings versus single-family homes, and therefore
higher risk of contact with infected individuals. Finally, SNAP benefits and mea-
sures of food access are included to indicate further travel from home for basic
necessities and/or less opportunity to amass food reserves to reduce the overall
frequency of shopping. We restricted candidate variables to those that would be
realistically publicly available or accessible in other parts of the United States. A
directed acyclic graph of the proposed relationship between variables is depicted in
Supplementary Fig. 11.

The BWQS distinguishes two groups of predictors. In one group, which
comprises our socioeconomic variables, the predictors are transformed into
quantiles using the empirical cumulative distribution function to limit the influence
of outliers and multiplied by ten to allow the COVID-19 inequity index to range
from [0, 10). The variable weights are forced to lie in [0, 1] and sum to 1 with a
uniform Dirichlet prior. We included a large candidate list of socioeconomic
variables in the BWQS, and all posterior probability distributions were estimated
leveraging a Hamiltonian–Monte Carlo algorithm, which is an efficient algorithm
for reducing correlation between sample states and improving the stability of the
variable weight estimates. Model diagnostics were monitored to evaluate chain
convergence and appropriateness of fit for each parameter. Quantile residuals were
constructed using posterior draws for diagnostics and visualization38. Our final list
of variables was based on an iterative process according to: (1) maximizing model
fit and penalizing complexity, measured by the WAIC, (2) removing one variable
when bivariate correlations were high (|τ| ≥ 0.9), and (3) our understanding of
underlying social processes in relation to infectious disease. The other group of
variables in a BWQS regression is the covariates, which in our case consist solely of
a natural spline smoother (3 degrees of freedom) for the testing ratio (the total
number of reported tests divided by the population per ZCTA). We included this to
account for variation in disease surveillance. The predictor is untransformed and
the coefficients are less constrained, using a normal prior with mean 0 and SD 100.
A negative-binomial distribution is used for the dependent variable: the cumulative
number of positive SARS-CoV-2 tests per 100,000 people. The resulting weighted
index was our COVID-19 inequity index. We compared the results of the BWQS
model to two other approaches. First, we conducted a negative binomial regression
with median income and percent uninsured, adjusting for the testing ratio using a
natural spline. Second, we conducted a PCA of the same ten social variables in the
BWQS. We took the first component (explaining 41.6% of the variance) and
included it in a negative binomial regression, adjusting for the testing ratio using a
natural spline. The model predictions were compared to the BWQS results using
the mean absolute error and Kendall’s tau metrics. Kendall’s tau was specifically
used to assess the rankings of infections per capita between ZCTAs, as that would
likely be more important to public health practitioners needing to prioritize
interventions.

We visualized the distribution of the COVID-19 inequity index values by self-
reported race/ethnicity as per the ACS categories and total population. We also
separate the inequity index values into three categories: below the 25th percentile,
between the 25th and 75th percentiles, and above the 75th percentile. Populations
were aggregated by race/ethnicity and then divided by the total population of the
associated ZCTAs.

Robustness of ZCTA-level measures. ZCTAs vary in size (populations from
3028 to 112,425 from the 2018 ACS) and may combine heterogeneous
neighborhoods with large variations in social variables. To evaluate whether the
ZCTA-level summary (mean) of social variables we used in constructing our
COVID-19 inequity index adequately captures the population distribution, or
whether infection rates for a ZCTA population is more closely related to the social
variables of those who are more disadvantaged within that ZCTA, we also
estimated the median and third quartile of the social variables understudy for each
ZCTA population using ACS data from census tracts (n= 2167 within NYC).
Given the many-to-many relationship of non-aligned ZCTAs and census tracts, we

estimated weighted quantiles of each of our social variables using the June 2020
HUD crosswalk tables39 that attribute the proportion of residential households in
each ZCTA living within each overlapping census tract reweighted by the average
household size.

Model description for BWQS regression. Here we provide a description of
BWQS regression when the outcome variable Y has a negative binomial density
distribution. The formulation of the negative binomial density distribution is:

NB yjμ;ϕ� � ¼ Γ y þ ϕ
� �

Γ ϕ
� �

Γ y þ 1
� � μ

μþ ϕ

� �y ϕ

μþ ϕ

� �ϕ

ð1Þ

where μ 2 Rþ , ϕ 2 Rþ and y 2 N .
The mean and variance of a random variable Y � NB yjμ; ϕ� �

are:

E Y½ � ¼ μ and Var Y½ � ¼ μþ μ2

ϕ
ð2Þ

We included the negative binomial distribution with η ¼ log μ
� �

where η 2 R in
the BWQS regression framework, so that the BWQS regression model has the
following form:

η ¼ β0 þ β1*BWQSþ δTX ð3Þ
where β0 is the intercept; β1 is the coefficient mapped to the COVID-19 inequity
index of NC mixture components previously transformed into quantiles and
multiplied by ten ðqÞ; BWQS index is ∑NC

j¼1wjqij with weight wj for the j-th mixture
component; and δ is a vector of coefficients mapped to the Nk covariates X which
in our model is a natural spline basis transformation of the testing ratio.

The choice of the prior of the model is based on prior literature, the prior
definition of the BWQS regression, and their properties of being conjugate:

β0; β1 � Nð0; 100Þ;
δ � NNk

ð0; 100*INk
Þ;

ϕ � invΓð0:01; 0:01Þ;
w � Dirichletð1Nc

Þ

ð4Þ

The Dirichlet distribution Dir αð Þ is a multivariate generalization of the Beta
density distribution and it belongs to a family of continuous multivariate
probability distributions parameterized by a vector α.

The α vector has the characteristics of the multinomial parameter, i.e., the
components of the α vector (αi for all i-th component) are positive reals and the
sum of all components is equal to 1 (∑I

i¼1αi=1). This second characteristic implies
that the estimates of all parameters are not independent, similarly to what we have
with the multinomial distribution. For these characteristics, the Dirichlet
distribution is commonly used as the prior for the multinomial distribution.

The Dirichlet distribution is also widely used as prior distribution because of its
property of being conjugate, which means that the posterior distribution will be a
Dirichlet with parameters α different from initial values. For this reason, this
distribution has an easy computation and facilitates quantification of how much
the prior beliefs have changed after including data in the model. In our case the
Dirichlet is parametrized by a parameter vector α ¼ 1; 1; ¼ ; 1ð Þ, which assumes a
uniform density distribution across the domain, implying a non-informative prior
for all weights. Changes in the α parameter vector suggest stronger assumptions
about the importance of each variable, which we do not have a priori. In other
words, the α parameter vector rules the shapes of the distribution; αi ¼ 1 assumes
uniform distribution across the domain of the ith mixture component, implying no
prior information about its contribution to the overall mixture. The full BWQS
package is available on GitHub: https://github.com/ElenaColicino/bwqs.

Alternative priors for the overdispersion parameter ϕ include a half-Cauchy
distribution or an Inverse-Gaussian distribution. While we chose minimally
informative priors, we also conducted a sensitivity analysis in which we used a half-
Cauchy (0, 3) distribution for the overdispersion parameter instead of the Inverse-
Gamma (0.01, 0.01) in our main model, ultimately comparing the resulting
coefficients and WAICs.

Capacity to social distance. Our BWQS model uses cross-sectional data to create
a COVID-19 inequity index, but we wanted to assess the degree to which those
differences in infections were explained longitudinally by the inability to socially
isolate/distance. We could not assess this directly, so we chose to look at subway
ridership in relation to the COVID-19 inequity index. We utilized MTA transit
data as a proxy for social distancing since public transit utilization during this time
period may reflect conditions that contribute to greater exposure risks, including
essential work and less ability to socially distance. Subway stations are in a fraction
of NYC ZCTAs, and individuals often traverse ZCTAs to get to a station, so we
aggregated subway utilization to 42 UHF neighborhoods. UHF neighborhoods are
composed of adjacent ZCTAs approximating community districts. Aberrantly low
utilization observations (<10%) in February and early March 2020 were removed
when explained by planned weekend service changes—specifically those in low
subway density areas. We computed a population-weighted COVID-19 inequity
index per UHF.

We modeled change in relative subway usage leading up to, and during, the
NYS on PAUSE period. Relative subway utilization is a proportion, therefore the
transition from business-as-usual to social distancing roughly followed a sigmoidal
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decay. A mean nonlinear response can be modeled by nonlinear least-squares when
a functional form is specified, as implemented by the drc R package40. We utilized a
generalized Weibull formula, which took the following functional form:

relative use ¼ cþ ðd � cÞð1� expð�expðbðlogðtimeindexÞ � logðeÞÞÞÞÞ; ð5Þ
where c is the lower asymptote, d is the upper asymptote, b is the slope, time index
is the transformation of the date as an integer, e is the inflection point of the
function, and relative use is the proportion of subway ridership. We fit two models,
one for neighborhoods with a COVID-19 inequity index at or below the median
and one for those above the median. We estimated parameters with the maximum-
likelihood method. We compared the slopes (b) and the lower asymptotes (c) of the
two models to investigate differences in the ability to socially isolate. To assess the
consistency of our results based on administrative units and BWQS cut points, we
repeated the analysis using three COVID-19 inequity index groups at the UHF
level, and then again at the ZCTA level.

COVID-19 inequity index and mortality. Given high COVID-related mortality
in disadvantaged communities, we wanted to assess if our COVID-19 inequity
index was also associated with cumulative COVID mortality by the total
population. To do so, we employed a negative binomial model, regressing ZCTA-
level COVID mortality on the COVID-19 inequity index. In order to adjust for
spatial autocorrelation, and thus unmeasured spatial confounding, we employed a
spatial filtering approach whereby we identify the eigenvector associated with
spatial autocorrelation (as measured by Moran’s I), and explicitly adjusted for those
values in the negative binomial regression41,42. The goal, then, was to “filter out”
spatial autocorrelation from the residuals. Negative binomial models were
implemented with the MASS package, supplemented with spatial functions from
the spdep and spatialreg packages43,44.

Mapping and coding. Geoprocessing and visualization of spatial data were con-
ducted with the sf package in R45. All analyses were conducted in R version 4.0.246.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Census data were drawn from https://api.census.gov/data/ using the tidycensus package in
R. NYC buildings data were drawn from https://www1.nyc.gov/assets/planning/download/
zip/data-maps/open-data/nyc_pluto_20v3_csv.zip and https://data.cityofnewyork.us/api/
geospatial/nqwf-w8eh?method=export&format=Shapefile. Zip code neighborhood
definitions were accessed from https://web.archive.org/web/20210221151212/https://www.
health.ny.gov/statistics/cancer/registry/appendix/neighborhoods.htm. NYC COVID-19
testing and mortality data: https://raw.githubusercontent.com/nychealth/coronavirus-data/
6d7c4a94d6472a9ffc061166d099a4e5d89cd3e3/tests-by-zcta.csv. United Hospital Fund
shapefile: https://www1.nyc.gov/assets/doh/downloads/zip/uhf42_dohmh_2009.zip. NYC
Boroughs shapefile: https://data.cityofnewyork.us/api/geospatial/tqmj-j8zm?method=export
&format=Shapefile. Modified ZCTA shapefile: https://data.cityofnewyork.us/api/geospatial/
pri4-ifjk?method=export&format=Shapefile. Food retailers in New York State: https://data.
ny.gov/api/views/9a8c-vfzj/rows.csv. Crosswalk table of ZCTAs to modified ZCTAs: https://
raw.githubusercontent.com/nychealth/coronavirus-data/master/Geography-resources/
ZCTA-to-MODZCTA.csv. Crosswalk table of ZCTA to Census Tracts: https://www.
huduser.gov/portal/datasets/usps/ZIP_TRACT_062020.xlsx. Geocoding tool for New York
State: https://gisservices.its.ny.gov/arcgis/rest/services/Locators/Street_and_Address_Compo
site/GeocodeServer/findAddressCandidates?f=json&maxLocations=1&SingleLine=. Source
data are provided with this paper.

Code availability
All analytic code, including download procedures, are available to the public47. A
compiled literate programming html report of all code with all generated output is
available at https://justlab.github.io/COVID_19_admin_disparities.
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