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H I G H L I G H T S  

� Flexible machine-learning models can estimate fine particulate PM2.5 concentrations. 
� Models require spatial cross-validation or else are assessed overly optimistically. 
� Gradient boosting with a small number of predictors creates excellent predictions. 
� New daily 1 km model for health studies in Northeastern USA 2000–2015.  
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A B S T R A C T   

Reconstructing the distribution of fine particulate matter (PM2.5) in space and time, even far from ground 
monitoring sites, is an important exposure science contribution to epidemiologic analyses of PM2.5 health im-
pacts. Flexible statistical methods for prediction have demonstrated the integration of satellite observations with 
other predictors, yet these algorithms are susceptible to overfitting the spatiotemporal structure of the training 
datasets. We present a new approach for predicting PM2.5 using machine-learning methods and evaluating 
prediction models for the goal of making predictions where they were not previously available. We apply 
extreme gradient boosting (XGBoost) modeling to predict daily PM2.5 on a 1 � 1 km2 resolution for a 13 state 
region in the Northeastern USA for the years 2000–2015 using satellite-derived aerosol optical depth and 
implement a recursive feature selection to develop a parsimonious model. We demonstrate excellent predictions 
of withheld observations but also contrast an RMSE of 3.11 μg/m3 in our spatial cross-validation withholding 
nearby sites versus an overfit RMSE of 2.10 μg/m3 using a more conventional random ten-fold splitting of the 
dataset. As the field of exposure science moves forward with the use of advanced machine-learning approaches 
for spatiotemporal modeling of air pollutants, our results show the importance of addressing data leakage in 
training, overfitting to spatiotemporal structure, and the impact of the predominance of ground monitoring sites 
in dense urban sub-networks on model evaluation. The strengths of our resultant modeling approach for exposure 
in epidemiologic studies of PM2.5 include improved efficiency, parsimony, and interpretability with robust 
validation while still accommodating complex spatiotemporal relationships.   

1. Introduction 

The spatial distribution of ground-level fine particulate air pollution, 
including particulate matter with an average diameter less than 2.5 μm 

(PM2.5), is complex due to the interactions of sources, topography, and 
atmospheric conditions. Statistical prediction approaches often combine 
data capturing putative sources and proxy exposure metrics, including 
satellite remote sensing retrievals of aerosol optical depth (AOD), in 
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reconstructing concentrations of PM2.5 (Bernardo S. Beckerman et al., 
2013a,b; Di et al., 2016; Hu et al., 2017; Just et al., 2015; Kloog et al., 
2014; Sampson et al., 2013; van Donkelaar et al., 2015). Our group has 
developed multiple models including statistical models integrating 
remote sensing with land use regression predictors using random effects 
and interpolation approaches (Just et al., 2015; Kloog et al., 2014; 
Sarafian et al., 2019). Additional approaches have included partial least 
squares (Sampson et al., 2013), geographically weighted regression (Hu 
et al., 2013), and use of chemical transport models (van Donkelaar et al., 
2015). Increasingly, exposure scientists have been utilizing more flex-
ible machine-learning approaches such as tree-based random forests (Hu 
et al., 2017), gradient boosting (Just et al., 2018; Reid et al., 2015), 
support vector machines (Stafoggia et al., 2017), and neural networks 
(Di et al., 2016). The adoption of prediction algorithms from the field of 
machine learning has been driven by apparent increases in predictive 
performance attributed to the ability to accommodate broader sets of 
covariates and complex relationships in space-time (Di et al., 2016; Hu 
et al., 2017; Reid et al., 2015). However, without adequate care for the 
structure of the data, these methods are prone to overfitting in areas 
with denser monitoring coverage (adopting values from nearby moni-
toring sites with limited use of covariates) and data leakage (inadvertent 
use of testing data in model fitting), which can lead to an overly opti-
mistic assessment of model performance. Importantly, flexible models 
that are fit without considering the spatial structure of the underlying 
phenomenon will appear to have substantially lower prediction errors 
than the same approaches fit with consideration of underlying depen-
dence, and this difference is evidence of overfitting. 

Our review of the current literature on algorithmic prediction of air 
pollution led to a concern that some of the gains in the reported per-
formance of these recent studies are overly optimistic. Just as new 
machine-learning tools have advanced the complexity of our models, 
new approaches and refinement are needed in the evaluation of model 
performance. Performance of prediction models is evaluated on data 
that have been withheld from training. Evaluating models on random 
subsets of the data (e.g. cross-validation in which the dataset is 
randomly divided into folds without regards to which monitor or region 
they come from) may give inappropriate estimates of model perfor-
mance due to spatiotemporal autocorrelation. Algorithmic models such 
as gradient boosted trees and neural networks have so many parameters 
that they can memorize the structure of exposed training data rather 
than encoding physical relationships with predictors that generalize to 
new contexts (e.g. locations of participants in health studies). 

In our view, the value of a model that predicts ground observations of 
PM2.5 using satellite data is that it can make predictions for locations 
that are far away from monitoring sites. The Northeast USA has many 
such remote locations in rural regions, far from the denser network of 
monitors found in some urban areas. But when random cross-validation 
folds are chosen such that two observations from the same monitor, or 
two monitors that are close together, can appear in different folds, the 
accuracy of such predictions is not well tested. For most observations, 
the model will have a close nearby monitor in its training data. In 
extreme cases, it can “predict” the held-out observation by just copying 
another observation from across the street on the same day without 
reliance on the other predictors in the model. That is, the model eval-
uation would reward overfitting in which the flexible model memorizes 
the spatiotemporal non-independence in the dataset rather than 
learning more complex yet generalizable relationships encoded in the 
features. One of the aims of the current study was to develop and 
compare the impact of evaluation metrics that account for this structure 
in applying flexible machine-learning approaches. 

Another tradeoff in building statistical models for air pollution pre-
dictions is in the number and diversity of predictor variables, particu-
larly given the limited number of unique monitoring sites with which to 
build these models. Previous approaches have varied widely in model 
building strategies. Some leading prediction models that utilize algo-
rithms that can incorporate many weak predictors can include >100 

covariates with varying spatial and temporal resolution (Di et al., 2016; 
Sampson et al., 2013). Others have used feature selection including the 
step-wise deletion-substitution-addition algorithm (Bernardo S. Beck-
erman et al., 2013a,b), or have used feature importance measures (Di 
et al., 2019). While predictive performance may not suffer from the 
inclusion of largely redundant features, advantages of constructing a 
more parsimonious model include improved interpretability and scal-
ability for updating and iteratively improving these models in the future. 

We present a parsimonious 1 � 1 km daily model for PM2.5, con-
structed via a hybrid satellite gradient boosting machine-learning 
model. We employ new machine-learning tools such as tree dropout 
with DART (Vinayak and Gilad-Bachrach, 2015) to avoid overfitting. 
Our model evaluation strategy carefully reflects the spatial structure of 
the ground monitoring network and compares traditional approaches 
(random cross-validation) with our novel spatial cross-validation. 
Finally, we utilize Shapley Additive Explanations (SHAP) (Lundberg 
et al., 2018) for feature selection and interpretation of our resulting 
PM2.5 predictions, offering a versatile variable importance metric. The 
methods and results we present here may help future air pollutant 
modeling efforts to simultaneously take advantage of the strengths of 
machine-learning approaches while avoiding the dangers of flexible 
learning. 

2. Methods 

2.1. Study domain 

The study area included all mid-Atlantic and New England states to 
cover the Northeastern region of the USA (Fig. 1). 

We included the District of Columbia and the 13 states of Con-
necticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, 
New Jersey, New York, Pennsylvania, Rhode Island, Vermont, Virginia, 
and West Virginia. The study period spanned 15 years from 2000 to 02- 
24 (when AOD data from the Terra satellite are first available) to 2015- 
12-31. The study area included 627,255 1 � 1 km grid cells. 

2.2. Satellite AOD data 

We used our reprocessed version of the MAIAC retrieval algorithm 
(Lyapustin et al., 2018, 2011) which provides a 1 � 1 km resolution AOD 
estimate from MODIS instruments on both Aqua and Terra satellites. The 
MAIAC data from MODIS Terra and Aqua represent a late morning and 
early afternoon measurement, respectively. We previously used an 
XGBoost model with 52 predictor variables, including MAIAC quality 
assurance, retrieval geometry, AOD spatial patterns, and land use, to 
reduce measurement error in MAIAC AOD (Just et al., 2018). This 
algorithmic correction versus overservations from the Aerosol Robotic 
Network (AERONET) of sun photometers, which does not utilize any 
ground measurements of particulate matter, decreased the root mean 
squared prediction error 43% for Aqua and 44% for Terra on withheld 
AERONET observations. The resulting corrected-MAIAC dataset 
included at least one satellite AOD observation for 30% of all possible 
site-days with PM2.5 observations, which is consistent with our previous 
work in the New England region (Kloog et al., 2014). 

2.3. PM2.5 monitoring data 

Data for daily PM2.5 mass concentrations across the Northeast region 
(see Fig. 1) for the years 2000–2015 were obtained from the U.S. 
Environmental Protection Agency (EPA) Air Quality System (AQS) 
precomputed daily summary files. Because each monitoring site may 
contain multiple instruments reporting measurements for PM2.5, the 
best available value was selected by prioritizing the designated primary 
monitor, or if not available, prioritizing Federal Reference Method 
(FRM) or Federal Equivalent Method (FEM) values; prioritizing filter- 
based measures over continuous monitors; and finally selecting the 
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lowest available parameter occurrence code (POC; an index on instru-
ment). To maximize the spatial and temporal coverage of the monitoring 
dataset, we used daily measures from non-FRM/FEM devices (parameter 
code 88502) if no FRM/FEM data were available, substantially 
increasing the number of unique locations and days with ground 
monitoring data. 

While PM2.5 data were retained regardless of exceptional event flags 
or the length of time that an instrument had reported data, one outlying 
value was dropped from a non-FRM collection on an atypical monitor 
that far exceeded all regional values (209.9 μg/m3). In addition, one site 
proximal to a large point source (the Clairton Coke Works in western 
Pennsylvania) was dropped as our previous work has shown that the 
monitor values are highly atypical (Just et al., 2018). When more than 
one monitoring site in the same 1 � 1 km grid cell reported PM2.5 on the 
same day (and thus would share all covariate values), we retained only 
the measure from the site with the most available daily measures 
(dropping n ¼ 4533 site-days between 2000 and 2015). There were 388 
monitoring sites in the resulting Northeast US dataset during the study 
period, for which EPA designated 41% as urban and city center, 39% as 
suburban, and 19% as rural (n ¼ 2 sites not reporting). In total the 
cleaned daily PM2.5 dataset included 692,306 observations, of which 
76% were FRM/FEM (parameter code 88101), and 68% were from 
filter-based integrated 24-h measurements versus 24-h block averages 
reported from continuous monitors. 

2.4. Selected predictors 

Inverse Distance Weighted (IDW) PM monitoring surface: To create a 
daily surface of the PM2.5 data coming from the monitors, we used 
inverse-distance weighting (IDW), either unmodified or as a feature 
provided to another model. To make an IDW prediction of PM2.5 for a 
given point, we computed the mean of the observations available on the 
same day, weighted by the reciprocal of the squared distance to the point 
in question. To avoid overfitting from proximal monitoring sites and to 
avoid leakage (where data from the test set are used in training), ob-
servations were excluded from the IDW calculation if they were in the 
same cross-validation fold as the given point, or if they were in the 
currently held-out (testing) fold. Thus, for each day a total of 9*10 ¼ 90 
IDW surfaces were calculated. 

Percentage of Developed Area: We used the United States Geological 
Survey (USGS) National Land Cover Dataset (NLCD) from 2011 (Homer 
et al., 2015), available as raster files with a 30 m spatial resolution. We 
calculated the percentages of all categories of developed area in each 1 
� 1 km grid cell across the study area. 

Planetary Boundary Layer Height: We used publicly available 3-h es-
timates on the height of the planetary boundary layer (PBL) obtained 
from the North America Regional Reanalysis (Mesinger et al., 2006). The 
spatial scale of the data was 32 � 32 km. Estimates were averaged to 
each 24 h period and assigned to the study grid without interpolation. 
The height of the boundary layer may vary with wind speed, influencing 
the concentration and vertical profile of pollutants (Oke, 2002). The 

Fig. 1. Study area in the Northeastern USA. PM2.5 monitoring sites are clustered spatially and assigned to 10 separate folds shown with distinct numeral labels and 
colors. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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boundary layer not only controls transport and location of pollutants 
and aerosols but also their concentrations would be different in variable 
boundary layer structures (Angevine et al., 2013). 

Other spatial/temporal predictors: Because a feature selection 
approach (described below) found that a parsimonious model with 8 
covariates was able to predict PM2.5 as well as a model with many more 
covariates, we present detailed methods for the full set of spatial/tem-
poral predictors in the Supplemental Materials. Additional derived 1 � 1 
km resolution predictors were included in the initial model but ulti-
mately not selected for the final model: elevation, local topography, 
road density, percentages of land use according to 11 other NLCD land 
use categories, meteorological estimates, normalized difference vege-
tation index, point emissions for PM2.5, and characteristics of the PM2.5 
monitor measurement (FRM/FEM 88101 versus non-FRM/FEM 88502 
data, and 24-h integrated versus block-averaged measures from 
continuous sensors). 

2.5. Statistical methods 

Predictive model fits were evaluated primarily with the root mean 
square error (RMSE) to aid in the comparability of performance metrics 
across subsets of the data (e.g. by year) and in comparison with other 
models in other regions. The improvement afforded by each model can 
be seen by comparing the RMSE with the standard deviation (SD) of the 
relevant set of AQS ground station observations which represents the 
relevant variability in PM2.5 air pollution that our model seeks to 
explain. We also computed the R2, calculated as 1 minus the mean 
square error divided by the variance (rather than the square of the 
correlation coefficient between predictions and observations). 

2.6. XGBoost modeling 

Most of our models are based on extreme gradient boosting (Chen 
and Guestrin, 2016). XGBoost works by building an ensemble of 
regression trees, like a random forest. Unlike random forests, which fit 
all trees independently, XGBoost uses the residuals of the first n trees to 
build the (n þ 1)st tree. It also uses several types of regularization, each 
controlled by its own tuning parameter, and it chooses split directions 
for missing values of predictors (such as AOD observations missing due 
to clouds or snow) as part of its training. We trained our XGBoost models 
with DART (Vinayak and Gilad-Bachrach, 2015), a method of tempo-
rarily dropping randomly selected trees, which has been shown to in-
crease the contributions of later trees and decrease overfitting in order to 
obtain good accuracy with fewer trees. 

For each XGBoost ensemble, we used 100 trees with mean square 
error as the objective function, and we enabled the one_drop option to 
DART (so that at least one tree is dropped in each round of training). We 
allowed six tuning hyperparameters to vary: η, γ, λ, α, the maximum tree 
depth, and DART’s dropout rate. Each time we trained an XGBoost 
model, we ran 50 rounds of an inner cross-validation to evaluate 50 
different vectors of hyperparameters, and chose the one with the lowest 
RMSE. Our hyperparameter tuning strategy incorporates a stochastic 
random search (rather than a grid search), but ensures an efficient 
exploration of the hyperparameter space by generating combinations of 
hyperparameters that are far apart from each other in the six- 
dimensional hyperparameter space using Latin hypercube sampling. 
This inner cross-validation used 2 folds, which were constructed as ag-
gregates of the 9 training folds available at the current stage of the outer 
cross-validation scheme. When there was no outer cross-validation to fit 
the full model, we constructed the 2 folds from all 10 folds of the spatial 
cross-validation scheme that is described below. 

2.7. Comparing model evaluation strategies 

To appropriately assess model accuracy, even in areas far from 
denser, urban groups of monitors, we developed a rigorous spatial cross- 

validation scheme, such that any two monitors sufficiently close 
together were assigned to the same fold (Fig. 1). First, we grouped 
monitors into spatial clusters, such that any two monitors within a 
prespecified threshold distance were placed in the same cluster. We set 
the threshold at 31 km, the median distance from all 1-km grid centroids 
to the nearest monitor; thus, the minimum distance between clusters is 
representative of the distance from the nearest monitor in out-of-sample 
prediction. We defined the clusters by applying single-link hierarchical 
clustering and cutting the tree at a height equal to the threshold dis-
tance. Note that this approach does not require prespecifying cluster 
centers or the number of clusters. Then, we assigned these clusters to 10 
folds with a greedy algorithm that considered clusters in order of 
decreasing size (in terms of number of total daily observations) and put 
each cluster in the fold that was so far the smallest, breaking ties 
randomly. The resulting cross-validation structure (“Spatial CV”) emu-
lates the need to evaluate model performance for populations that do not 
live directly next to a monitor by excluding from training all proximal 
monitor-level information for each location. 

We evaluated the spatial cross-validation strategy and the potential 
for overfitting by comparing it with other cross-validation strategies. In 
the 2009 data, we compared the accuracy of our full XGBoost model as 
estimated by Spatial CV to its accuracy as estimated by two simpler and 
commonly used strategies. For “Site-wise CV”, we kept all observations 
from a given monitoring site in the same fold, but we randomly assigned 
monitoring sites to folds without regard for distance to other sites. For 
“Random CV”, we assigned observations to ten folds randomly and 
independently, regardless of monitoring site. We hypothesized that the 
less strict cross-validation strategies would show evidence of overfitting 
with apparently improved accuracy. 

Because the layout of monitors is uneven, with many more obser-
vations coming from dense urban networks than remote areas, estimates 
of overall accuracy (like RMSE) will predominantly reflect performance 
in more densely monitored areas rather than sparsely monitored (rural 
and suburban) areas. To offset this, we constructed a spatially weighted 
evaluation, in which each observation’s error was divided by the num-
ber of observations in the same day and spatial cluster, making each 
cluster of equal weight regardless of density of monitors. 

2.8. Comparing models 

To evaluate the predictive value of a model with the complexity of 
XGBoost, we compared our model to two simpler models and evaluated 
them with the same cross-validation schemes. On the 2009 data, we 
compared our XGBoost model with an IDW of PM2.5 sites alone and a 
linear regression model using the same predictors as the XGBoost model. 
To handle missing AOD, we augmented the linear-regression model with 
dummy variables for AOD missingness, and set the missing values 
themselves to 0. 

The contributions of each feature to cross-validated predictions were 
quantified with Shapley Additive Explanations (SHAP) values (Lundberg 
et al., 2018). These SHAPs are an additive feature attribution measure to 
interpret complex machine-learning models. Each SHAP is the contri-
bution of each feature to a specific individual prediction; for PM2.5, the 
contributions are in units of μg/m3. Specifically, the SHAP for a given 
predictor and a given observation is the difference in the output, i.e. a 
predicted PM2.5 concentration, if the model is fit with or without the 
predictor. For each observation, the sum of all SHAPs, plus the bias term 
(which is the overall mean PM2.5 concentration in the training data), 
equals the prediction from the XGBoost model. The resulting matrix of 
SHAPs can be summarized to understand how a predictor contributes to 
the predictions. The mean absolute SHAP across all observations sum-
marizes the overall contribution of each feature, and more local model 
interpretation is possible through exploratory data visualization, such as 
scatterplots of individual predictors versus their SHAPs. 
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2.9. Feature selection 

As with many other complex machine-learning methods, XGBoost’s 
performance is not impaired very much by the inclusion of uninforma-
tive features, so long as it is tuned appropriately. Still, removing features 
that do not appreciably improve predictions makes a model easier to 
interpret and easier to use. There were six predictors that were included 
in all multi-variable models based on the data structure and a priori 
knowledge from our previous research: longitude, latitude, and date to 
reduce spatial and temporal autocorrelation in prediction errors, height 
of the PBL, and Aqua and Terra AOD satellite measures. We examined 
the contribution of each of 38 additional features (including meteoro-
logical and land use terms commonly used in land use regression) with a 
backwards stepwise scheme. After a model with all features was fit with 
spatial CV on the 2009 data, and its spatially weighted RMSE was 
computed, we removed the feature with the least mean absolute SHAP. 
Then we refit the model with the remaining features and continued the 
process. 

2.10. Predictions across the whole study area 

For making predictions out to arbitrary days and grid cells, we 
trained the final model with all observations of PM2.5. For consistency 
and to avoid overfitting with the IDW predictor, for grid cells whose 
distance to the nearest monitoring site was less than or equal to the 
clustering threshold, we computed the IDW predictor holding out all 
observations in that nearest site’s spatial fold. For all other grid cells, we 
did not hold out any observations. We used R 3.6.0 (R Core, 2019) with 
data.table 1.12.2 (Dowle and Srinivasan, 2019) and xgboost [commit 
f2277e7 Dec 3, 2019] (Chen et al., 2019) for analysis. 

3. Results 

The mean of all available PM2.5 measurements in the Northeast 
during the study period was 10.54 μg/m3 with a SD of 7.07 μg/m3 and 
an interquartile range of 8.00 μg/m3. 

3.1. Comparing cross-validation strategies 

We clustered the 387 p.m.2.5 monitoring sites using the previously 
mentioned 31-km threshold. The result was 91 clusters, 52 of which 
include only 1 site, and the three largest having 75, 40, and 36 sites, 
corresponding to New York City, Philadelphia, and the greater 
Baltimore-Washington D.C area. Finally, these clusters were assigned to 
ten spatial folds. For the year 2009, the resulting spatial folds had 3591 
to 11,743 observations; for the full 2000-2015 period, the spatial folds 
had 60,301 to 130,200 observations. In the study-area map (Fig. 1), each 
monitoring site is numbered with its fold in the latter set of folds. 

In the 2009 data, we examined the accuracy achieved by XGBoost 
models under different cross-validation approaches. Random CV 
appeared to have the best performance (suggesting substantial over-
fitting when the model training includes observations from other dates 
at testing sites), followed by Site-wise CV, in which the model training 
includes data from nearby monitoring sites, and then Spatial CV, in 
which the model training mimics a lack of nearby monitoring sites. The 
unweighted RMSEs are 2.10 μg/m3 for Random CV, 2.63 μg/m3 for Site- 
wise CV, and 3.12 μg/m3 for Spatial CV. With spatially weighted eval-
uation (such that denser subnetworks are not more important than rural 
subnetworks), error further increases, but the performance gap between 
cross-validation strategies shrinks, with RMSEs of 2.45 μg/m3 for 
Random CV, 2.94 μg/m3 for Site-wise CV, and 3.22 μg/m3 for Spatial 
CV. Importantly, even in the case of Spatial CV with spatial weighting, 
the RMSE represents a substantial improvement over the SD of PM2.5, 
which is 5.74 μg/m3, or 5.69 μg/m3 with spatial weighting. Values of R2 

are 0.87 for Random CV, 0.79 for Site-wise CV, and 0.70 for Spatial CV. 
We also examined weighted training, in which observations were 

weighted during training with the same scheme as for weighted evalu-
ation. This change had little effect on model performance (results not 
shown). 

Fig. 2 shows how per-monitor RMSEs appear lower under Site-wise 
CV than Spatial CV especially when the monitor in question is close to 
another monitor. 

3.2. XGBoost versus other modeling approaches 

We also compared our model with simpler modeling approaches. 
Using spatial cross-validation with weighted evaluation, a daily IDW 
surface achieved a RMSE of 3.57 μg/m3 and a linear regression model 
with the same covariates achieved a RMSE of 3.35 μg/m3, compared to 
the XGBoost RMSE of 3.22 μg/m3 and the weighted SD of 5.69 μg/m3. 

3.3. Feature selection 

To develop a more parsimonious and interpretable model, we 
implemented a recursive feature selection in the dataset for the year 
2009 (Fig. 3). 

As shown in Fig. 3, few features beyond the base six were needed to 
achieve the performance of the model with all features. The proportion 
of developed area and daily IDW interpolation (the last two features to 
be dropped) are clearly helpful; each reduces the RMSE by about 0.2 μg/ 
m3. The other features have noisy effects that bring the RMSE from 3.19 
μg/m3 with daily IDW and proportion developed area to a minimum of 
3.13 μg/m3 with larger sets of variables. On the basis of these results, we 
chose to retain only the daily IDW and the proportion developed area, in 
addition to the preselected features of longitude, latitude, date, height of 
the PBL, and the corrected MAIAC AOD for Aqua and Terra, for a total of 
eight predictors. 

3.4. Multi-year results 

Using the parsimonious model, we cross-validated our XGBoost 
model on the full multi-year dataset (2000-2015). Supplemental 
Table S1 shows the hyperparameters that were selected in each fold. The 
688,724 observations had a weighted SD of 6.93 μg/m3. We obtained a 
weighted RMSE of 3.56 μg/m3, and an R2 of 0.76 under our rigorous 
spatial cross-validation. Table 1 shows model performance when strat-
ifying predictions by year. We emphasize the importance of the RMSE to 
describe model performance across datasets - our model improves 
(lower RMSE) in more recent years, but the R2 worsens as the SD de-
creases faster than RMSE in more recent years. Fig. 4 shows how the 

Fig. 2. The difference in RMSE for 2009 observations, grouped by monitor, 
between predictions under Site-wise CV and Spatial CV strategies. Greater 
positive values mean greater accuracy under Site-wise CV. Monitors with less 
than 50 observations in 2009, and an outlier at (0.53 km, � 3.51 μg/m3), are 
not shown. 
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RMSE in 2015 varies over space. 
Our model included EPA AQS non-regulatory observations (param-

eter code 88502) in the dependent variable at monitoring site-days 
without regulatory PM2.5 observations (parameter code 88101), mak-
ing up 24% of all cases. To evaluate if our model performance was worse 

when using this expanded set of observations, we stratified our cross- 
validated predictions by parameter code. Among regulatory observa-
tions, the weighted SD was 7.09 μg/m3 whereas the RMSE was 3.58 μg/ 
m3. Among non-regulatory observations, the SD was 5.96 μg/m3 

whereas the RMSE was 3.46 μg/m3. Thus, performance was slightly 
better among non-regulatory observations, likely due to a lower SD. 

3.5. Predictions across the whole study area 

Finally, we refit our XGBoost model to the entire dataset in order to 
make daily predictions across the whole study area for use in health 
study applications. Fig. 5 shows the mean annual predicted PM2.5 value 
at each grid square throughout 2015. 

Fig. 6 zooms in on New Jersey and compares the 2015 means to the 
2005 means and shows the well-documented regional decrease in PM2.5 
seen across this period of time (Chan et al., 2017). 

3.6. Interpreting model fits 

We calculated SHAPs for the contribution of each feature to each 
prediction in order to generate exploratory visualizations. In the 
Northeastern US, a low AOD more consistently contributes to a lower 
PM2.5 prediction (SHAP < 0), while higher AOD values (>0.25) corre-
spond to higher SHAPs but with a substantially more diffuse point cloud 
(Fig. 7). We also examined whether the relationships between predictors 

Fig. 3. Cross-validation RMSE in the year 2009 model using recursive feature selection. Labels show the variable dropped at each step (top to bottom) based on the 
smallest mean absolute SHAP. 

Table 1 
An assessment of cross-validated predictions of the final model using Spatial CV, 
stratified by year.  

Year R2 SD RMSE R2, 
spatial 

RMSE, 
spatial 

R2, 
temporal 

RMSE, 
temporal 

2000 0.72 8.16 4.36 0.67 1.58 0.72 4.05 
2001 0.76 8.75 4.27 0.70 1.50 0.77 4.03 
2002 0.78 9.41 4.42 0.72 1.39 0.79 4.21 
2003 0.78 8.51 4.00 0.72 1.42 0.79 3.75 
2004 0.77 7.81 3.76 0.74 1.35 0.78 3.49 
2005 0.76 8.37 4.14 0.74 1.51 0.76 3.89 
2006 0.80 7.90 3.52 0.66 1.52 0.81 3.23 
2007 0.76 7.84 3.87 0.68 1.56 0.77 3.59 
2008 0.73 6.51 3.39 0.68 1.31 0.74 3.15 
2009 0.70 5.74 3.12 0.62 1.27 0.72 2.85 
2010 0.76 6.32 3.08 0.69 1.25 0.77 2.84 
2011 0.70 5.98 3.25 0.67 1.31 0.72 2.96 
2012 0.68 5.13 2.91 0.63 1.13 0.69 2.67 
2013 0.71 5.27 2.85 0.58 1.14 0.73 2.57 
2014 0.64 4.95 2.97 0.50 1.50 0.66 2.64 
2015 0.68 5.20 2.93 0.58 1.24 0.70 2.66  
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and their SHAPs (the contributions to the predictions) varied by site. 
Using a subset of 59 monitoring sites with at least 100 days of collocated 
PM2.5 and Terra AOD, we plotted a histogram of the Pearson correlation 
coefficient of the AOD and the SHAPs which were strongly positive but 
also varied substantially from site to site (Fig. 8). 

4. Discussion 

Prediction models such as those estimating air pollution exposures 
need to be evaluated with care to avoid overfitting in order to provide 
accurate and unbiased exposure predictions for health studies. Similarly, 
the use of large numbers of minimally informative covariates within 
highly parameterized algorithms leads to complex and inefficient 
models that are computationally expensive and hard to interpret. With 
the increasing use of flexible and highly parameterized machine- 
learning methods, issues of overfitting are amplified because learning 
algorithms will incorporate any form of data leakage in evaluating 
model fit, while training data for spatio-temporal phenomena like PM2.5, 
that are strongly associated with time and space. 

Advancing the field of air pollution prediction modeling requires 
reevaluating our approaches - not just looking for the highest reported 
R2. For environmental epidemiology studies using these types of pre-
diction models to assign exposures, the error in the prediction is more 
relevant to estimating health impacts rather than the overall fit of the 
exposure model (where R2 can increase just by modeling a larger space- 
time region with more overall variation). In addition, the main purpose 
for air pollution prediction models is to estimate concentrations in areas 
lacking monitors. Because most PM2.5 monitors are in dense and largely 
urban sub-networks, other models missing an explicitly spatial approach 
to cross-validation are overstating their overall performance and may 
not be evaluating their performance in more sparsely monitored areas. A 
novel contribution of this study is the consideration of the impact of 
uncritical cross-validation within our model. This includes a random 
cross-validation that ignores the structure of the data entirely and leads 
to overly optimistic assessment of model performance after learning site- 
specific biases, a site-wise cross-validation that emulates prediction at 

Fig. 4. Unweighted RMSE across the study area in 2015, aggregated into 0.1� � 0.1� squares for data visualization.  

Fig. 5. Annual average PM2.5 for the year 2015 across the full Northeastern 
USA study area. 
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new locations but ignores the tendency of models to copy nearby values, 
and a spatial cross-validation that stringently evaluates performance in 
new areas that are not near other monitors. We show in Fig. 2 that the 
apparent greater performance (lower RMSE) due to overfitting of the 
site-wise versus spatial cross-validation is greater at sites that are closer 
to their respective nearest other site. Furthermore, we adopt a weighted 
evaluation to compensate for the larger proportion of data coming from 
denser subnetworks of monitoring sites. We demonstrate a large impact 
of these approaches on model performance measures (RMSE and R2) as 
evidence of overfitting when using flexible machine-learning ap-
proaches like XGBoost. The adoption of spatial cross-validation and 
careful consideration of the structure of the training data may lead to 
less overly optimistic measures of model performance. 

To advance the field of air pollution prediction modeling, we focused 
on constructing a flexible yet parsimonious model for computational 
efficiency and interpretability of the resulting fits. While many machine- 
learning algorithms handle additional predictors, there are still impor-
tant benefits to more parsimonious models for scalability of generating 
and organizing the predictor datasets and interpretability of the con-
tributions of the component predictors. We incorporate several specific 
methods to constrain our modeling in order to preserve parsimony. First, 
because XGBoost iteratively refits on residual error, we incorporate 
random tree dropout with DART (Vinayak and Gilad-Bachrach, 2015) 
which has been shown to decrease over-specialization and results in 
similar performance of models with many fewer rounds (100 versus 10, 
000þwithout DART). Secondly, we avoid overfitting in model tuning by 
conducting our hyperparameter tuning within a nested cross-validation 
(without exposing testing data). Finally, we apply feature selection using 
a recently developed measure of variable importance (mean absolute 
SHAP) to select a top-performing feature subset for our final model. 

Compared with previous regional PM2.5 models, we include a sub-
stantially larger set of monitoring data for PM2.5 24-h concentration 
from the EPA AQS which are used both as predictors (in our inverse 
distance weighted surfaces) and outcome measures that are predicted by 
the model. Specifically, we included regulatory (parameter code 88101) 
measures and also used non-regulatory (parameter code 88502) obser-
vations for site-days without available regulatory measures, with the 
latter making up 24% of our training data. In a sensitivity analysis, we 
demonstrate that cross-validated predictions were similar for these non- 
regulatory measures, supporting their inclusion to expand monitoring 
coverage. The use of a larger set of ground monitoring data, alongside 
our robust cleaning of other covariates, including MAIAC AOD (Just 
et al., 2018), contributes to our confidence in these results. Because we 
propose a more stringent and spatially explicit evaluation of prediction 
model fits, our summaries are not easily compared with previously 
published PM2.5 models. 

In spite of their impressive predictive performance, machine- 
learning algorithms including XGBoost are often criticized as “black 

Fig. 6. Annual average PM2.5 estimates over the New Jersey region in 2005 and 2015.  

Fig. 7. Scatterplot of the non-missing MAIAC AOD from Terra versus the SHAP 
contribution to the XGBoost prediction model for all sites for all days. The 
density of points is indicated by color. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 8. Histogram of the per-site Pearson correlations between non-missing Terra AOD values and corresponding SHAPs for 59 sites with at least 100 non-missing 
values in 2015. 
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box” models that lack interpretability. We use SHAP values to quantify 
and visualize complex relations captured in our model (Lundberg et al., 
2018). For example, our SHAP plots provide new context on the 
contribution of satellite AOD (a measure that integrates the entire at-
mospheric column) when an IDW of surface PM2.5 is also available 
approximating local conditions. Our scatterplot of AOD values versus 
their SHAP contribution to PM2.5 predictions shows that a low AOD 
more consistently contributes to a lower predicted surface PM2.5 con-
centration (as there are lower concentrations of aerosols anywhere in 
the atmospheric column), while higher AOD (>0.2) makes a diffuse 
contribution to predictions of ground-level concentrations that is more 
dependent on complex interactions (such as with PBL). When summa-
rizing the SHAPs by site, we saw strong positive correlations between 
non-missing AOD and the SHAP contribution to the prediction that 
varied substantially from site to site. Although we constructed our SHAP 
values from the spatial cross-validation using withheld data, the varia-
tion from site to site is further support for the idea that the XGBoost 
model incorporates sufficient complexity to approximate site-specific 
associations. This may lead to overly optimistic assessments of model 
fit without careful cross-validation. Concurrent with the decrease in 
average PM2.5 concentrations across the Northeast during the 16-year 
study time period, we also compared the fits of our annual models to 
each other. While the RMSE has been decreasing, indicating an 
improvement with lower prediction error in more recent years, the 
proportion of the total variance explained (R2), which is commonly re-
ported to summarize overall fits of exposure models, is also going down 
(getting worse). As average PM2.5 concentrations decreased over the 
study period (2000-2015) in response to air quality regulations, the 
proportion of the PM2.5 distribution that is explained by less predictable 
stochastic variation has increased with dampening of the seasonality 
and the contribution of larger regional pollutant trends. 

Like all prediction models for environmental pollutant concentra-
tions, our model has some limitations. The highly performant predictive 
modeling algorithm (XGBoost) that we employed requires more exper-
tise with model training versus parametric and semi-parametric models 
or even related but simpler predictive algorithms, such as random for-
ests, that have many fewer tuning parameters. In addition, we have not 
yet evaluated how well our modeling approach that explicitly divides up 
training data based on their spatial pattern would apply in different 
regions that may have a very different spatial structure in their distri-
bution of ground monitors (e.g. more uniformly distributed or far more 
sparse). Finally, we use information about time and space as predictors 
in our model which means that while our approach is an important 
advance on completing spatio-temporal exposure matrices for a given 
time-space domain, it is not appropriate for hindcasting/forecasting 
outside of the time period used in training nor can we directly apply this 
model to new regions that are outside the training area. 

Our model joins a growing set of daily PM2.5 prediction models for 
the United States that utilize satellite AOD and machine-learning ap-
proaches to advance exposure assessment for health applications. For 
example, Hu et al. applied a Random Forest (Hu et al., 2017), and Di 
et al. used artificial neural networks (Di et al., 2016) and ensembles of 
multiple machine-learning models (Di et al., 2019). These 
machine-learning hybrid models join a larger body of literature 
combining chemical transport models or land use regression approaches 
to estimating PM2.5 over large regions of the USA (van Donkelaar et al., 
2015; Wang et al., 2018). 

Our daily 1 � 1 km resolution PM2.5 model has excellent perfor-
mance, although we demonstrate that good metrics are harder to ach-
ieve when carefully considering the goals of evaluating predictions from 
satellite-based hybrid models in areas that are not near existing moni-
tors. Strengths of our model include improved efficiency, parsimony, 
and interpretability while still accommodating complexity and robust 
validation without overfitting. 
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