
XIS-temperature: A daily spatiotemporal machine-learning model for air 
temperature in the contiguous United States

Allan C. Just a,b,c,* , Kodi B. Arfer a,c, Johnathan Rush c, Itai Kloog c,d

a Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
b Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
c Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
d The Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel

A R T I C L E  I N F O

Keywords:
XGBoost
Exposure assessment
Land surface temperature
Climate and health
Temperature and social vulnerability

A B S T R A C T

The challenge of reconstructing air temperature for environmental applications is to accurately estimate past 
exposures even where monitoring is sparse. We present XGBoost-IDW Synthesis for air temperature (XIS-Tem
perature), a high-resolution machine-learning model for daily minimum, mean, and maximum air temperature, 
covering the contiguous US from 2003 through 2023. XIS uses remote sensing (land surface temperature and 
vegetation) along with a parsimonious set of additional predictors to make predictions at arbitrary points, 
allowing the estimation of address-level exposures. We built XIS with a computationally tractable workflow for 
extensibility to future years, and we used weighted evaluation to fairly assess performance in sparsely monitored 
regions. The weighted root mean square error (RMSE) of predictions in site-level cross-validation for 2023 was 
1.78 K for the minimum daily temperature, 1.19 K for the mean, and 1.48 K for the maximum. We obtained 
higher RMSEs in earlier years with fewer ground monitors. Comparing to three leading gridded temperature 
models in 2021 at thousands of private weather stations not used in model training, XIS had at most 60% of the 
mean square error for the minimum temperature and 93% for the maximum. In a national application, we report 
a stronger relationship between summertime minimum temperature and social vulnerability with XIS than with 
the other models. Thus, XIS-Temperature has potential for reconstructing important environmental exposures, 
and its predictions have applications in environmental justice and human health.

1. Introduction

Reconstructions of outdoor air temperature are an important 
exposure-assessment tool in characterizing the effect of extreme weather 
on human health. Epidemiological studies and health-impact assess
ments rely on accurate exposure modeling, and many people do not live 
close to monitoring stations. Large populations within a metropolitan 
area may be assigned the temperature from the nearest weather station 
(e.g., an outlying airport), yet temperatures can vary substantially across 
the area, even block-to-block, due to factors such as varying land cover 
and urban heat islands (Tuholske et al., 2021; Yu et al., 2024). While 
there are a number of available temperature models, developed for 
various purposes, that are used in health studies, they vary in accuracy 
and resolution.

Gridded temperature estimates are often built from numerical 
weather models and assimilation systems (NASA, 2022), or from hybrid 

approaches that downscale these models to a higher resolution (Crosson 
et al., 2020). An intercomparison of classical modeling and emergent 
machine-learning approaches to statistical downscaling of global 
climate models found that complex approaches may offer few benefits 
without careful refinement (Vandal et al., 2019). Sophisticated inter
polation approaches for weather monitors can account for elevation 
with digital elevation models (DEMs; Thornton et al., 2021), but they 
may not capture temperature variation driven by hyper-local land-use 
differences, such as those that occur within urban heat archipelagos, 
which may also be underrepresented within long-term climate-moni
toring networks. Satellite remote sensing offers important predictors for 
land-use regression of air temperature, ranging from land-cover classi
fications to vegetation indices. The Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor on NASA’s Terra and Aqua satellites 
offer daily thermal infrared-derived land surface temperature (LST). 
These LST products cover the top few millimeters of the earth’s surface 
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at a 1-km resolution. Recent reprocessing of MODIS data and advance
ments in the LST retrieval algorithms have reduced geolocation error 
and improved sensor calibration (Hulley, 2021). Although the relation 
between LST and air temperature is complex, we and many others have 
integrated LST into geostatistical models trained with air-temperature 
monitors (Gutiérrez-Avila et al., 2021; Kloog et al., 2012; Oyler et al., 
2015). In a recent model comparison that reconstructed air temperature 
in the Northeastern US at 1 km of resolution, we found that a 
machine-learning approach based on gradient boosting outperformed 
several other approaches, including generalized additive mixed models 
with spatial smoothing (Carrión et al., 2021). Machine learning is 
increasingly used to integrate remotely sensed predictors for 
higher-resolution predictions, but it is computationally demanding. 
Machine learning also needs reproducible data-ingestion pipelines to be 
extensible and to remain as up-to-date as the popular interpolation 
models (Thornton et al., 2021).

Gridded models are subject to a tradeoff between spatial resolution 
and computational demands as the resulting datasets expand. But even 
1-km grid cells can fail to capture temperature gradients that are 
important for human health. In this study, we extend our prior machine- 
learning framework (Carrión et al., 2021) and switch to a point-based 
model that incorporates both rasterized and continuous fields. With a 
point-based approach, we can make daily predictions anywhere in the 
contiguous United States, such as at exact locations for geocoded ad
dresses. We call this model XGBoost-IDW Synthesis (XIS) and build a 
reusable and extensible data pipeline to generate our daily 
XIS-Temperature predictions for 2003 through 2023; in a companion 
paper (Just et al., 2024), we use the same approach for modeling fine 
particulate air pollution (PM2.5). Popular gridded models report only 
daily minimum and maximum temperature because they rely on inter
polation of observed extrema. With large quality-controlled time-
resolved observation series, one can construct accurate daily mean 
temperatures, without the assumption of diurnal symmetry (and 
consequent bias) that is inherent in averaging daily minima and maxima 
together (Bernhardt et al., 2018). We fit separate models for the daily 
minimum, mean, and maximum temperature, because all three variables 
are relevant in applications, including epidemiology.

We present detailed performance metrics for XIS-Temperature using 
a site-level cross-validation across the contiguous US with stratification 
by year, season, and NOAA climate region (Karl and Koscielny, 1982; 
NOAA, 2013). Because weather stations are found more often in densely 
populated areas, we use weights to appropriately quantify performance 
across the study region, including suburban and rural areas (Carrión 
et al., 2021). It is often difficult to tell which particular weather stations 
have been used in training large models, raising the threat of data 
leakage in model comparison. We consider three gridded models pop
ular for applied research in the US, and compare them to XIS on thou
sands of private weather stations that were not used for training any of 
the models. Finally, to demonstrate the model-dependent interpretation 
of temperature exposures and to show implications for environmental 
justice, we show the relation of a summer temperature from XIS (versus 
the same gridded models) with tract-level social vulnerability (Centers 
for Disease Control and Prevention, 2018) across the contiguous US.

2. Method

2.1. Study area and time period

XIS-Temperature covers the same area and time period as XIS-PM2.5 
(Just et al., 2024), namely the contiguous US (excluding large water 
bodies) for 2003 through 2023. Like XIS-PM2.5, XIS-Temperature rep
resents space as floating-point longitude-and-latitude pairs and repre
sents days as midnight-to-midnight intervals of Central Standard Time 
(UTC− 6).

3. Data

3.1. Temperature

A key input for geostatistical models of environmental conditions is 
the set of observations used for training. We separately modeled three 
metrics of daily temperature as dependent variables (DVs): minimum 
(hereinafter “min”) temperature, mean temperature, and maximum 
(hereinafter “max”) temperature. Our primary source of temperature 
data was the Meteorological Assimilation Data Ingest System (MADIS; 
Miller et al., 2005), maintained by the National Oceanic and Atmo
spheric Administration (NOAA), from which we ingested the National 
Mesonet and COOP datasets available to registered research organiza
tions. We used an additional data source for comparisons with other 
models: Weather Underground, a private commercial network of per
sonal weather stations, which we have used previously (Carrión et al., 
2021). For MADIS, we started with individual observations timestamped 
to the second, whereas for Weather Underground, we used precomputed 
daily means and extrema. We filtered and quality-checked the data per 
year and source as follows. 

1. Drop station-times with a missing temperature, time, longitude, 
or latitude.

2. (MADIS only) Keep only station-times passing at least MADIS 
quality-control stages 1 and 2 checks for validity and consistency 
(temperatureDD equal to S, V, K, or k).

3. To handle instances where nearby stations might be duplicates, 
group stations into clusters in which no two stations are more 
than 50 m apart. In each cluster, keep only the station with the 
most common station identifier. Identify these clusters as stations 
henceforth, using the lexicographically first location as the 
location for the cluster.

4. Drop stations outside the study area.
5. Remove rows with observations that are beyond NOAA’s record 

historical extrema for the region (State Climate Extremes Com
mittee, 2022).

6. Among observations that are equal (or very close) to 0 ◦F or 0 ◦C, 
try to distinguish which are real measurements and which 
represent missing values. We do this by dropping any such “zero 
observations” with no other observation at the same station 
within 5 days that is both nonzero and within 3 K of the zero 
observation.

7. Drop to one observation per station-time, preferring observations 
that appear earlier in the input.

8. (MADIS only) Ensure that each station-day covers at least 18 
distinct hours in UTC− 6, then aggregate into days. Compute the 
min as simply the minimum observation on each date, and like
wise for the max. Compute the mean with all observations on the 
date, weighted according to the number of seconds in the date to 
which each observation is closest. Weighting ensures that in the 
case of unevenly sparse observations across a day, the mean does 
not overrepresent times of day with particularly dense observa
tions. (Note that in general, the daily Weather Underground 
values have been computed differently, including a different time 
zone.)

9. Remove daily observations that are part of a run of equal values, 
spanning more than 3 consecutive nonmissing station-days, for 
any of min, mean, or max temperature.

10. For spatial consistency, compare observations that are within 
100 km of two other observations. If these neighbors have an 
elevation difference from the original observation no greater than 
500 m, and both differ from the original observation by more 
than 20 K, drop the original observation. Run this check sepa
rately for each DV, but drop the entire row (i.e., all DVs) if an 
observation fails on any of them.

11. Drop stations with less than 30 days of observations.
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3.2. Predictors

We used the following 13 variables as predictors. 

• Longitude and latitude
• The integer day of the year
• An inverse distance weighting (IDW) feature, which is an interpo

lation of the relevant temperature metric (min, mean, or max) at sites 
within 100 km, weighted by the distance (thus, the IDW exponent is 
1)

• Two overpasses per day of Aqua LST (Hulley, 2021), one during the 
daytime and one at night, represented in kelvins

• Monthly vegetation, quantified as the enhanced vegetation index 
from Aqua (Didan, 2021)

• Two variables for surface imperviousness (from the National Land 
Cover Database; Dewitz, 2021): one for the imperviousness at a 
single 30-m grid cell and one for the Gaussian-filtered impervious
ness in a 1-km square around the query point (Just et al., 2024)

• Population density, from the Gridded Population of the World 
(Center For International Earth Science Information 
Network-CIESIN-Columbia University, 2018)

• Elevation, from the US Geological Survey’s 3D Elevation Program 
(US Geological Survey, 2017)

• Hilliness, or local relative topography, quantified as the multi-scale 
topographic dissection index computed from elevation (Oyler 
et al., 2015)

• Distance from water, in kilometers

Given the goal of sharing an efficient geospatial data-processing 
workflow, we reused variable construction with XIS-PM2.5 for the ma
jority of predictors (Just et al., 2024).

We computed distance from water using the North America Rivers 
and Lakes dataset (http://web.archive.org/web/2023052921311 
3/https://www.sciencebase.gov/catalog/item/4fb55df0e4b04cb93775 
1e02). We considered all lakes and reservoirs with areas of at least 1000 
km2, plus the ocean. Distances were capped at 500 km so that our model 
did not use this variable as an index of far-inland locations in place of the 
longitude and latitude features.

3.3. Models

The core modeling approach used extreme gradient boosting 
(XGBoost) and IDW with station-level cross validation, as in Just et al. 
(2024). We conducted tuning as in Just et al. (2024) separately for each 
of the three DVs, resulting in a separate hyperparameter vector for each 
(Table 1).

3.4. Evaluation

We used station-wise cross-validation (CV) as for XIS-PM2.5, but with 
5 rather than 10 folds for speed, in the face of much larger datasets. The 
concerns that motivated the use of absolute-error metrics for XIS-PM2.5 
did not apply to the temperature data, so we gave XGBoost a square- 
error objection function, evaluated the models with RMSE, and 
measured baseline variability with the standard deviation (SD). In order 
to account for the highly variable density of observations across the 
study region, we weighted observations by their spatial coverage with 

the same daily Voronoi-diagram method we used for XIS-PM2.5. We 
calculated SHAP (Lundberg et al., 2020) for our cross-validated pre
dictions to quantify feature contributions.

4. Results

4.1. Cross-validation

Table 2 shows weighted results for each year of CV. The bias of our 
predictions per year ranged from − 0.012 to +0.025 K for min temper
ature, − 0.046 to +0.003 K for mean temperature, and − 0.081 to 
− 0.024 K for max temperature. Table 3 shows per-region performance 
for a single year; Figure S1 plots per-region performance for a single DV 
in every year. Table S1 shows unweighted performance at particularly 
isolated stations, as a demonstration of how the model performs in 
sparsely monitored regions. Finally, Tables S2 and S3 show unweighted 
CV results among station-days that are particularly hot or cold, which is 
of particular relevance for epidemiologic applications examining the 
health impacts of extreme weather and similar to an analysis for our 
previous temperature model (Carrión et al., 2021).

To demonstrate the difference between mean temperature modeled 
directly and mean temperature represented as the average of min and 
max, we computed the weighted root mean square difference between 
our mean predictions and the average of our min and max predictions 
for 2023. The result was 0.77 K, comparable in magnitude to our RMSEs 
from CV.

Fig. 1 shows a mean absolute SHapley Additive exPlanations (SHAP) 
for each feature (omitting the IDW feature which has much greater 
absolute SHAP than any other). SHAPs can be interpreted analogously to 
the terms of a linear-regression model: a SHAP of +2.5 for a given 
predictor and case means that the model attributes a +2.5 increase in its 
prediction for that case to that predictor. We see that although there is 
substantial variation by region, the largest contributions come from the 
IDW feature, elevation, longitude, and distance from water.

One may wonder why the SHAPs for LST are so small. Part of the 
answer appears to be competition with the overwhelmingly effective 
IDW predictor. When the model for 2010 mean temperature is refit in CV 
without the IDW predictor, the mean absolute SHAPs increase from 
0.028 to 0.055 for daytime LST and 0.030 to 0.038 for nighttime LST. 
LST is largely missing (in 76% of cases for day and 82% for night): when 
we examine mean absolute SHAPs among only cases with non-missing 
LST, we find that these numbers increase further, to 0.150 for day and 
0.149 for night.

Fig. 2 shows one year of daily predictions and error (i.e., the dif
ference from observations) for a single representative station.

4.2. New predictions

For the following plots and analyses, we fit XIS to all the training data 
we had for each year and made predictions for new point-days. Fig. 3
maps predictions for the entire study area on the hottest day in 2023. 
Fig. 4 shows predictions for the same day in the New York City area, with 
discernible fine-scale variation in temperature, such as cooler air in 
Central Park than in adjacent built-up areas within the island of 
Manhattan.

4.3. Comparison with other models

Table 4 and 5 show RMSEs (stratified by year and then by seasons of 
2023) of daily min temperature from our model and three gridded 
temperature products: PRISM (4 km in resolution; PRISM Climate 
Group, 2024), gridMET (4 km; Abatzoglou, 2013) and Daymet (1 km; 
version 4 revision 1; Thornton et al., 2021). Table S4 shows analogous 
results to Table 4 for max temperature. The models are tested on ob
servations at Weather Underground stations. For each available year, we 
take a random sample of 10,000 such stations that lie in the intersection 

Table 1 
Selected hyperparameters for the three dependent variables.

Dependent 
variable

Number of 
rounds

Max 
depth

Eta Gamma Lambda Alpha

temp.min 500 9 0.11 0.110 58 0.0100
temp.mean 500 9 0.18 0.077 680 0.0081
temp.max 500 9 0.12 0.066 150 0.0380
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of all four modeling regions and provide at least 347 days of observa
tions (about 95% of a common year), so we only analyze years with at 
least this many stations available. We compute weights for these ob
servations with the same algorithm we used for the main CV. We omit 
December 31st on leap years, since Daymet provides no predictions on 
these days, and on the final year of comparisons, since PRISM’s date 
scheme is misaligned by one day and the next year of predictions is not 
yet available. For min temperature, with averaging across years, our 
model has 47% of the MSE of PRISM, 47% of gridMET, and 56% of 
Daymet. Without weighting, these figures become 39% of PRISM, 38% 
of gridMET, and 49% of Daymet. Yearly weighted biases range from 
− 0.83 to − 0.61 K for PRISM, − 0.81 to − 0.54 K for gridMET, − 0.68 to 
− 0.39 K for Daymet, and − 0.06 to +0.08 K for XIS. For max 

temperature, our results are less impressive than for min temperature, 
because the three competitor models are much improved compared to 
min temperature: XIS obtains 87% of the MSE of PRISM, 87% of grid
MET, and 97% of Daymet. The yearly weighted biases range from − 0.95 

Table 2 
Weighted SDs and RMSEs (K) from yearly CV.

Year Observations Sites Min temp. Mean temp. Max temp.

SD RMSE SD RMSE SD RMSE

2003 907,131 4876 10.53 2.56 10.90 2.14 11.91 2.78
2004 1,266,937 5828 10.24 2.26 10.48 1.85 11.35 2.37
2005 1,778,765 8400 10.35 2.19 10.73 1.71 11.71 2.21
2006 2,335,197 9660 10.03 2.16 10.38 1.56 11.32 2.04
2007 2,689,582 10,839 10.76 2.09 11.11 1.54 12.10 2.06
2008 2,928,358 11,903 10.78 1.88 11.04 1.38 11.94 1.79
2009 3,190,170 12,416 10.69 1.90 10.94 1.39 11.80 1.79
2010 3,439,466 13,506 10.65 1.86 11.07 1.34 12.11 1.76
2011 3,830,866 14,825 10.90 1.90 11.30 1.36 12.28 1.76
2012 5,330,791 21,039 10.11 1.82 10.45 1.24 11.40 1.61
2013 5,929,147 22,068 11.07 1.80 11.29 1.28 12.09 1.69
2014 6,235,048 22,784 11.09 1.79 11.22 1.25 12.03 1.64
2015 6,245,577 23,163 10.58 1.76 10.71 1.24 11.52 1.62
2016 6,317,539 22,291 10.27 1.82 10.51 1.30 11.43 1.66
2017 6,492,587 22,851 10.36 1.82 10.68 1.29 11.66 1.64
2018 6,101,552 22,136 11.13 1.78 11.29 1.21 12.12 1.54
2019 6,454,618 25,514 11.16 1.73 11.40 1.20 12.26 1.53
2020 7,269,937 26,785 10.47 1.80 10.67 1.17 11.53 1.47
2021 7,835,606 27,255 10.66 1.77 10.81 1.17 11.66 1.47
2022 8,037,915 27,371 11.62 1.81 11.71 1.20 12.42 1.50
2023 8,280,718 29,270 10.43 1.78 10.71 1.19 11.61 1.48

Table 3 
Weighted SDs and RMSEs (K) for 2023 broken down by region.

Region Observations Sites Min temp. Mean temp. Max temp.

SD RMSE SD RMSE SD RMSE

Ohio Valley 687,096 2529 8.52 1.22 8.73 0.75 9.63 1.05
Upper Midwest 506,838 1812 10.66 1.35 11.06 0.79 12.16 1.14
Northeast 1,119,757 3833 9.17 1.30 9.25 0.82 10.21 1.15
Northwest 771,008 2697 8.40 2.07 9.44 1.40 11.02 1.75
South 831,782 2962 9.42 1.38 9.24 0.89 9.68 1.19
Southeast 1,043,562 3766 8.05 1.19 7.36 0.75 7.58 1.09
Southwest 899,707 3197 10.09 2.43 10.79 1.73 11.65 2.02
West 2,016,434 6938 9.60 2.42 10.10 1.65 11.00 1.94
Northern Rockies and Plains 404,534 1536 10.79 1.87 11.44 1.23 12.59 1.50

Fig. 1. Mean absolute SHAP of each predictor in 2010 for mean temperature 
(the IDW feature, which has much greater absolute SHAP than everything else, 
is omitted). Small dots show per-region means. Diamonds show overall means.

Fig. 2. A plot of predicted min temperature from CV in 2010 (points), and the 
distance from the observed value (line segments), for a station in the Chats
worth neighborhood of Los Angeles. This station was selected to have the yearly 
per-station unweighted RMSE closest to the median among all stations that had 
an observation for at least 347 days of 2010. Its RMSE is 1.27 K.
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to − 0.58 K for PRISM, − 0.73 to − 0.41 K for gridMET, − 0.68 to − 0.31 K 
for Daymet, and − 0.72 to − 0.28 K for XIS.

To examine how XIS’s higher spatial resolution contributed to its 
improved performance, we also tried making XIS predictions for the 
2023 test observations using the centroids of Daymet’s 1-km grid cells 
instead of the true locations. The result was an unweighted RMSE for 
min temperature of 2.293 K, compared to 2.291 K for using the true 
locations and 2.645 K for Daymet.

4.4. Model application to social vulnerability

We examined how minimum temperature in 2010-06-01 through 
2010-08-31 related to the social vulnerability index in 2010 (Centers for 
Disease Control and Prevention, 2018). We fit a mixed-effects linear 
regression model where the unit of analysis was the 71,712 US Census 
tracts in our study area and the dependent variable was the mean of the 
minimum temperature at the center of population of each tract. The 
model had a fixed effect for vulnerability, per-county random slopes of 
vulnerability, and per-county random intercepts (with the slopes and 
intercepts modeled as correlated). The fixed effect of vulnerability was 
estimated as 0.75 K ([0.70, 0.79]), where the latter is a 95% CI, meaning 
that a change from minimum to maximum vulnerability was associated 
with a 0.75-K higher minimum temperature on this day.

We fit similar mixed models with temperature estimates from the 
gridded temperature products to which we compared XIS earlier, and 
obtained substantially smaller estimates for this effect: 0.24 K ([0.19, 
0.28]) for PRISM, 0.28 K ([0.24, 0.32]) for gridMET, and 0.20 K ([0.17, 
0.23]) for Daymet.

5. Discussion

We present a daily spatiotemporal air temperature model for the 
contiguous US that covers 21 years. Our model, XIS-Temperature, builds 
on a large time-resolved dataset of ground observations, NOAA’s 
MADIS. As expected, our model shows substantial accuracy, which in
creases in more recent years, since the number of observations available 
increases tenfold from 2003 to 2023.

We compared XIS predictions for min and max temperatures with 
three leading gridded models at 10,000 private weather stations, 
reweighted spatially to increase representativeness for the full study 
region. We have substantially lower RMSE than all three competitors in 
every year of the comparison. When we further stratified our model 
comparison by season in 2023, XIS had the least RMSE for each season, 
as well as the least variability in RMSE across seasons. A sensitivity 

Fig. 3. Predicted mean temperature for Jul 27, 2023 across the study area, shown in the US National Atlas projection. We chose this date for having the highest mean 
temperature in 2023 across all stations. The underlying prediction grid has cells about 9097 m apart.

Fig. 4. Predicted mean temperature for Jul 27, 2023 in the New York City area. 
Areas of water have been masked out of the plot. In the center is Brooklyn; 
Staten Island lies to the southwest, Manhattan to the northwest, and Queens to 
the north. The underlying prediction grid has cells about 110 m apart.

Table 4 
Comparison of minimum temperature weighted SD and RMSEs (K) forPRISM, 
gridMET, Daymet, and XIS.

Year Observations SD PRISM gridMET Daymet XIS

2015 3,613,296 10.67 2.56 2.55 2.36 1.68
2016 3,612,812 10.39 2.62 2.61 2.36 1.81
2017 3,602,753 10.56 2.64 2.68 2.40 1.82
2018 3,593,725 11.25 2.67 2.68 2.45 1.89
2019 3,600,723 11.22 2.60 2.59 2.36 1.72
2020 3,609,000 10.54 2.62 2.61 2.39 1.79
2021 3,508,692 10.77 2.57 2.59 2.32 1.79
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analyses generating XIS predictions at the same centroids used by 
Daymet’s 1-km grid (as opposed to exact locations of weather stations) 
showed that our improved accuracy is not explained by differences in 
resolution. Overall, testing on a large network of private weather sta
tions demonstrates that using XIS-Temperature obtains lower exposure 
measurement error overall, as well as lower seasonal variation in the 
error.

We fit separate models for min, mean, and max temperature because 
all three DVs have useful applications in estimating impacts of temper
ature. Our primary data source, MADIS, provides time-resolved air- 
temperature data; thus, we did not need to rely on the inexact date- 
shifting used by other models (Oyler et al., 2015; Thornton et al., 
2021). We calculated a daily time-weighted mean temperature for 
MADIS data, and trained a separate model for mean temperature, to 
avoid the assumption of diurnal symmetry; that is, the assumption that 
the daily mean is reasonably approximated by the mean of the daily 
extrema (Bernhardt et al., 2018). Given the inherent difficulty in esti
mating extrema, as well as the higher SD we observed for max tem
perature compared to mean and min, it is not surprising that our 
mean-temperature models have lower RMSE than our extrema models.

As a demonstration of the application of the XIS model to social 
vulnerability, we constructed a national multi-level regression for the 
relation of tract-level minimum temperature in the summer of 2010 with 
social vulnerability, nested within counties, similar to our previous 
analysis in the Northeast US (Carrión et al., 2021). Comparing the most 
vulnerable to the least vulnerable tracts, we saw a substantially larger 
difference in temperature when using XIS than when using any of the 
competing models. Differences in overall accuracy are the most likely 
explanation for these model-dependent findings, although we also 
highlight the advantage of our point-based model to resolve stark dis
parities in temperature between nearby neighborhoods. Our application 
shows the model-dependent interpretation of the complex relation be
tween temperature and vulnerability; a more thorough evaluation of 
temperature disparities, as we have previously shown for the Northeast 
US (Carrión et al., 2024), is ongoing.

The limitations of our model include temporal coverage bounded by 
our inclusion of data from NASA’s Aqua satellite. XIS-Temperature only 
goes back as far as 2003, whereas Daymet goes back to 1980. Further
more, because we fit our model annually and incorporated new stations 
as they came online (improving our accuracy for later years), our model 
may not be well suited for studying long-term climate change. While we 
only train on data that have passed quality control from MADIS and we 
detail a number of further filtering steps, future refinements of XIS could 
explore an adaptive buddy check (where the threshold for data exclusion 
depends on the local space-time variability) versus the use of hardcoded 
thresholds (Dee et al. 2001); Our 2023 model performance is worst in 
the West and Southwest regions, which may be related to more complex 
topoclimatic relations. Future inclusion of predictors related to snow 
cover may help in those regions, particularly in winter, which was the 
hardest season to predict for XIS as well as for the competing models. 
Given the importance of the IDW of temperature measurements and 
elevation in our SHAP analysis, there may be further feature engineering 
that offers improvement. A future refinement of our IDW could incor
porate environmental lapse rates (e.g., considering both horizontal 
distance and elevation gradients in IDW construction) (Daly et al., 
2008). Our SHAP analysis suggests that the LST variables contribute 

little to predictions, although we had expected them to contribute in 
complex terrain, particularly for min temperature (Oyler et al., 2016). 
Future XIS development could adopt the approach of constructing 
measures of monthly relative LST variation over local windows (Oyler 
et al., 2015) to identify 1-km pixels that are hotter or colder than nearby 
pixels, rather than directly including the daily (and often missing) LST 
values.

Applicability of the XIS-Temperature model in environmental 
epidemiology includes several important opportunities for future 
research. Health studies of climate-related variables would benefit from 
the simultaneous consideration of temperature and mass-based humid
ity metrics (Baldwin et al., 2023). The reusable structure of the XIS 
framework lends itself to other spatiotemporal variables and there is a 
XIS-Humidity under development. Important exposure modeling op
portunities also include the propagation of spatial uncertainty (related 
to people’s time-activity patterns) and model prediction uncertainty. 
XIS-Temperature could also be used for important analyses of other 
outcomes, such as energy demand at the complex nexus of disparities in 
heat, housing, and energy justice (Carrión et al., 2024).

The parsimony and automation of XIS-Temperature enable further 
development, refinement, and the inclusion of new predictors. Thus we 
expect further improvement as we extend XIS into the future. Not only 
have we demonstrated better predictive accuracy and smaller bias than 
three leading gridded models, assessed at a large network of private 
weather stations, but we have shown a strong model-dependent relation 
of extreme heat and social vulnerability, highlighting the importance of 
using improved exposure models such as XIS-Temperature in health- 
impacts analyses.
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Season Observations Sites SD PRISM gridMET Daymet XIS

Winter 891,385 17,970 9.85 3.23 3.89 3.28 2.61
Spring 914,624 10,000 8.78 3.10 3.20 2.78 2.37
Summer 913,267 10,000 5.75 2.84 2.89 2.53 2.34
Fall 904,499 10,000 8.72 3.07 3.14 2.91 2.54
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Data availability

Intermediate data files to reproduce our analyses are openly avail
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